[python][examples] added template for blocksparse

This commit is contained in:
Philippe Tillet
2019-09-03 20:44:27 -04:00
parent 5e03f0a065
commit 2ccc915011
9 changed files with 225 additions and 56 deletions

View File

@@ -3,15 +3,16 @@ import triton
import numpy as np
src = """
// Templates for accessing A
#if AT == 1
#define USEA ^a
#define USE_A ^a
#define STRIDE_AK lda
#define STRIDE_AM 1
#define BROADCAST_AK :, newaxis
#define BROADCAST_AM newaxis, :
#define SHAPE_A TK, TM
#else
#define USEA a
#define USE_A a
#define STRIDE_AK 1
#define STRIDE_AM lda
#define BROADCAST_AK newaxis, :
@@ -19,15 +20,16 @@ src = """
#define SHAPE_A TM, TK
#endif
// Templates for accessing B
#if BT == 1
#define USEB ^b
#define USE_B ^b
#define STRIDE_BK 1
#define STRIDE_BN ldb
#define BROADCAST_BK newaxis, :
#define BROADCAST_BN :, newaxis
#define SHAPE_B TN, TK
#else
#define USEB b
#define USE_B b
#define STRIDE_BK ldb
#define STRIDE_BN 1
#define BROADCAST_BK :, newaxis
@@ -56,7 +58,7 @@ void dot(TYPE * A, TYPE * B, TYPE * C,
TYPE b[SHAPE_B] = *pb;
// reduction loop
for(int k = K; k > 0; k-= TK){
c += USEA @ USEB;
c += USE_A @ USE_B;
pa = pa + TK * STRIDE_AK;
pb = pb + TK * STRIDE_BK;
a = *pa;
@@ -71,57 +73,54 @@ void dot(TYPE * A, TYPE * B, TYPE * C,
}
"""
def cdiv(a, b):
return -(-a // b)
class dot_op:
def __init__(self, trans_a = False, trans_b = False):
def __init__(self, transpose_a = False, transpose_b = False):
self.dot = triton.op(src, ['C'])
self.trans_a = trans_a
self.trans_b = trans_b
self.transpose_a = transpose_a
self.transpose_b = transpose_b
def __call__(self, a, b):
# extract shapes
shape_a = triton.shape(a)
shape_b = triton.shape(b)
M = shape_a[0]
Ka = shape_a[1]
Kb = shape_b[0]
N = shape_b[1]
M, Ka = shape_a[0], shape_a[1]
Kb, N = shape_b[0], shape_b[1]
# transpose shapes
if self.trans_a:
if self.transpose_a:
M, Ka = Ka, M
if self.trans_b:
if self.transpose_b:
Kb, N = N, Kb
K = Ka
# contiguous dimensions
lda = Ka
ldb = N
lda = M if self.transpose_a else Ka
ldb = Kb if self.transpose_b else N
ldc = N
# allocate output
c = triton.empty([M, N])
return self.dot(a, b, c, M, N, K, lda, ldb, ldc,
lambda opt: [cdiv(M, opt.d('TM')), cdiv(N, opt.d('TN'))],
AT = self.trans_a, BT = self.trans_b, TYPE = tf.float16,
TM = [128], TN = [ 128], TK = [32])
# compute
return self.dot(a, b, c, M, N, Ka, lda, ldb, ldc,
lambda opt: [triton.cdiv(M, opt.d('TM')), triton.cdiv(N, opt.d('TN'))],
AT = self.transpose_a, BT = self.transpose_b, TYPE = tf.float16,
TM = [128], TN = [128], TK = [32])
def dot(a, b, trans_a = False, trans_b = False):
if (trans_a, trans_b) not in dot.ops:
dot.ops[trans_a, trans_b] = dot_op(trans_a, trans_b)
return dot.ops[trans_a, trans_b](a, b)
def dot(a, b, transpose_a = False, transpose_b = False):
if (transpose_a, transpose_b) not in dot.ops:
dot.ops[transpose_a, transpose_b] = dot_op(transpose_a, transpose_b)
return dot.ops[transpose_a, transpose_b](a, b)
dot.ops = dict()
# @triton.register_gradient(dot_op)
# def _dot_grad(op, dy):
# a = op.inputs[0]
# b = op.inputs[1]
# return [dot_tn(dy, b), dot_nt(a, dy), None, None, None, None, None, None, None]
@tf.RegisterGradient("Dot")
def _dot_grad(op, dy):
a = op.inputs[0]
b = op.inputs[1]
return [dot_tn(dy, b), dot_nt(a, dy), None, None, None, None, None, None, None]
def run_dot():
M, N, K = 128, 128, 128
a = tf.placeholder(tf.float16, shape=[M, K])
b = tf.placeholder(tf.float16, shape=[N, K])
c = dot(a, b, trans_a = False, trans_b = True)
c = dot(a, b, transpose_a = False, transpose_b = False)
# Reference
ha = np.random.rand(M, K).astype(np.float16)
hb = np.random.rand(K, N).astype(np.float16)
@@ -131,7 +130,8 @@ def run_dot():
result = sess.run([c], feed_dict = {a: ha,
b: hb})[0]
# Test
hresult = np.dot(ha, hb.T)
print(result)
hresult = np.dot(ha, hb)
dif = np.abs(result - hresult)
np.savetxt('dif.dat', dif, '%2.4f')
print("dif: %f" % np.max(dif))