[PYTHON] Cleaned up legacy code; added simple standalone compilation API (#22)

This commit is contained in:
Philippe Tillet
2022-07-26 11:06:45 -07:00
committed by GitHub
parent 96cc6fb563
commit 3265e0df5a
84 changed files with 1382 additions and 14023 deletions

View File

@@ -0,0 +1,202 @@
from __future__ import annotations
import builtins
import time
from typing import Dict
class Autotuner:
def __init__(self, kernel, arg_names, configs, key, reset_to_zero, prune_configs_by: Dict = None):
'''
:param prune_configs_by: a dict of functions that are used to prune configs, fields:
'perf_model': performance model used to predicate running time with different configs, returns running time
'top_k': number of configs to bench
'prune_num_stages_by'(optional): a function used to prune num_stages. It take configs:List[Config] as its input, and returns pruned configs.
'''
if not configs:
self.configs = [Config(dict(), num_warps=4, num_stages=2)]
else:
self.configs = configs
self.key_idx = [arg_names.index(k) for k in key]
self.cache = dict()
self.kernel = kernel
# hook to reset all required tensor to zeros before relaunching a kernel
self.hook = lambda args: 0
if reset_to_zero is not None:
self.reset_idx = [arg_names.index(k) for k in reset_to_zero]
def _hook(args):
for i in self.reset_idx:
args[i].zero_()
self.hook = _hook
self.arg_names = arg_names
# prune configs
if prune_configs_by:
perf_model, top_k = prune_configs_by['perf_model'], prune_configs_by['top_k']
if 'early_config_prune' in prune_configs_by:
early_config_prune = prune_configs_by['early_config_prune']
else:
perf_model, top_k, early_config_prune = None, None, None
self.perf_model, self.configs_top_k = perf_model, top_k
self.early_config_prune = early_config_prune
def _bench(self, *args, config, **meta):
# check for conflicts, i.e. meta-parameters both provided
# as kwargs and by the autotuner
conflicts = meta.keys() & config.kwargs.keys()
if conflicts:
raise ValueError(
f"Conflicting meta-parameters: {', '.join(conflicts)}."
" Make sure that you don't re-define auto-tuned symbols."
)
# augment meta-parameters with tunable ones
current = dict(meta, **config.kwargs)
def kernel_call():
if config.pre_hook:
config.pre_hook(self.nargs)
self.hook(args)
self.kernel(*args, num_warps=config.num_warps, num_stages=config.num_stages, **current)
return triton.testing.do_bench(kernel_call)
def __call__(self, *args, **kwargs):
self.nargs = dict(zip(self.arg_names, args))
if len(self.configs) > 1:
key = tuple([args[i] for i in self.key_idx])
if key not in self.cache:
# prune configs
pruned_configs = self.configs
if self.early_config_prune:
pruned_configs = self.early_config_prune(self.configs, self.nargs)
if self.perf_model:
top_k = self.configs_top_k
if isinstance(top_k, float) and top_k <= 1.0:
top_k = int(len(self.configs) * top_k)
if len(pruned_configs) > top_k:
est_timing = {config: self.perf_model(**self.nargs, **kwargs, **config.kwargs, num_stages=config.num_stages, num_warps=config.num_warps) for config in pruned_configs}
pruned_configs = sorted(est_timing.keys(), key=lambda x: est_timing[x])[:top_k]
bench_start = time.time()
timings = {config: self._bench(*args, config=config, **kwargs)
for config in pruned_configs}
bench_end = time.time()
self.bench_time = bench_end - bench_start
self.cache[key] = builtins.min(timings, key=timings.get)
self.hook(args)
self.configs_timings = timings
config = self.cache[key]
else:
config = self.configs[0]
self.best_config = config
if config.pre_hook is not None:
config.pre_hook(self.nargs)
return self.kernel(*args, num_warps=config.num_warps, num_stages=config.num_stages, **kwargs, **config.kwargs)
class Config:
"""
An object that represents a possible kernel configuration for the auto-tuner to try.
:ivar meta: a dictionary of meta-parameters to pass to the kernel as keyword arguments.
:type meta: dict[Str, Any]
:ivar num_warps: the number of warps to use for the kernel when compiled for GPUs. For example, if
`num_warps=8`, then each kernel instance will be automatically parallelized to
cooperatively execute using `8 * 32 = 256` threads.
:type num_warps: int
:ivar num_stages: the number of stages that the compiler should use when software-pipelining loops.
Mostly useful for matrix multiplication workloads on SM80+ GPUs.
:type num_stages: int
:ivar pre_hook: a function that will be called before the kernel is called. Parameters of this
function are args.
"""
def __init__(self, kwargs, num_warps=4, num_stages=2, pre_hook=None):
self.kwargs = kwargs
self.num_warps = num_warps
self.num_stages = num_stages
self.pre_hook = pre_hook
def __str__(self):
res = []
for k, v in self.kwargs.items():
res.append(f'{k}: {v}')
res.append(f'num_warps: {self.num_warps}')
res.append(f'num_stages: {self.num_stages}')
return ', '.join(res)
def autotune(configs, key, prune_configs_by=None, reset_to_zero=None):
"""
Decorator for auto-tuning a :code:`triton.jit`'d function.
.. highlight:: python
.. code-block:: python
@triton.autotune(configs=[
triton.Config(meta={'BLOCK_SIZE': 128}, num_warps=4),
triton.Config(meta={'BLOCK_SIZE': 1024}, num_warps=8),
],
key=['x_size'] # the two above configs will be evaluated anytime
# the value of x_size changes
)
@triton.jit
def kernel(x_ptr, x_size, **META):
BLOCK_SIZE = META['BLOCK_SIZE']
:note: When all the configurations are evaluated, the kernel will run multiple time.
This means that whatever value the kernel updates will be updated multiple times.
To avoid this undesired behavior, you can use the `reset_to_zero` argument, which
reset the value of the provided tensor to `zero` before running any configuration.
:param configs: a list of :code:`triton.Config` objects
:type configs: list[triton.Config]
:param key: a list of argument names whose change in value will trigger the evaluation of all provided configs.
:type key: list[str]
:param prune_configs_by: a dict of functions that are used to prune configs, fields:
'perf_model': performance model used to predicate running time with different configs, returns running time
'top_k': number of configs to bench
'early_config_prune'(optional): a function used to do early prune (eg, num_stages). It take configs:List[Config] as its input, and returns pruned configs.
:param reset_to_zero: a list of argument names whose value will be reset to zero before evaluating any configs.
:type reset_to_zero: list[str]
"""
def decorator(fn):
def wrapper(kernel):
return Autotuner(kernel, fn.arg_names, configs, key, reset_to_zero, prune_configs_by)
fn.kernel_decorators.append(wrapper)
return fn
return decorator
def heuristics(values):
"""
Decorator for specifying how the values of certain meta-parameters may be computed.
This is useful for cases where auto-tuning is prohibitevely expensive, or just not applicable.
.. highlight:: python
.. code-block:: python
@triton.heuristics(values={'BLOCK_SIZE': lambda args: 2 ** int(math.ceil(math.log2(args[1])))})
@triton.jit
def kernel(x_ptr, x_size, **META):
BLOCK_SIZE = META['BLOCK_SIZE'] # smallest power-of-two >= x_size
.param values: a dictionary of meta-parameter names and functions that compute the value of the meta-parameter.
each such function takes a list of positional arguments as input.
.type values: dict[str, Callable[[list[Any]], Any]]
"""
def decorator(fn):
def wrapper(kernel):
def fun(*args, **meta):
for v, heur in values.items():
assert v not in meta
meta[v] = heur({**dict(zip(fn.arg_names, args)), **meta})
return kernel(*args, **meta)
return fun
fn.kernel_decorators.append(wrapper)
return fn
return decorator