[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2021-03-06 22:06:32 -05:00
parent 6f789b29ab
commit 32aaf8b469
17 changed files with 400 additions and 275 deletions

View File

@@ -179,7 +179,7 @@ to download the full example code</p>
</div>
<div class="sphx-glr-example-title section" id="fused-softmax">
<span id="sphx-glr-getting-started-tutorials-02-fused-softmax-py"></span><h1>Fused Softmax<a class="headerlink" href="#fused-softmax" title="Permalink to this headline"></a></h1>
<p>In this tutorial, you will write a fused softmax layer that outperforms PyTorch implementation and learn about:</p>
<p>In this tutorial, you will write a fused softmax operation (that outperforms PyTorch) and learn about:</p>
<ul class="simple">
<li><p>The benefits of kernel fusion for bandwidth-bound operations.</p></li>
<li><p>The syntax and usage of reduction operators in Triton.</p></li>
@@ -209,13 +209,15 @@ Let us consider instead the case of a simple (numerically stabilized) softmax op
</pre></div>
</div>
<p>When implemented naively in pytorch, computing <code class="code docutils literal notranslate"><span class="pre">y</span> <span class="pre">=</span> <span class="pre">naive_softmax(x)</span></code> for <span class="math notranslate nohighlight">\(x \in R^{M \times N}\)</span> requires reading <span class="math notranslate nohighlight">\(7MN\)</span> elements from DRAM and writing back <span class="math notranslate nohighlight">\(3MN + 2M\)</span> elements.
Instead, we want to write a custom “fused” pytorch operators that only reads X once and does all the necessary computations on-chip.
This would require reading and writing back only <span class="math notranslate nohighlight">\(MN\)</span> bytes, so we could expect a theoretical speed-up of 5x.
In practice, though, we expect less because our kernel will spend some time computing exponentials and moving data around in shared memory.</p>
This is obviously wasteful; wed prefer to have a custom “fused” kernel that only reads X once and does all the necessary computations on-chip.
In this case, we would be reading and writing back only <span class="math notranslate nohighlight">\(MN\)</span> bytes, so we could expect a theoretical speed-up of ~5x (i.e., <span class="math notranslate nohighlight">\((10MN + 2M) / 2MN\)</span>).
In practice, though, we would be getting a bit less as our kernel computes exponentials and internally moves data around in shared memory.</p>
</div>
<div class="section" id="compute-kernel">
<h2>Compute Kernel<a class="headerlink" href="#compute-kernel" title="Permalink to this headline"></a></h2>
<p>Our softmax kernel works as follows: each program loads a row of X and writes back a normalized row of Y. Note that one important limitation of Triton is that each block must have a power-of-two number of elements, which means that we need to guard the memory operations properly if we want to handle any possible input shapes:</p>
<p>Our softmax kernel works as follows: each program loads a row of the input X, normalizes it and writes back the result to the output Y.
Note that one important limitation of Triton is that each block must have a power-of-two number of elements,
so we need to internally “pad” tiles and guard the memory operations properly if we want to handle any possible input shapes:</p>
<blockquote>
<div><div class="highlight-C notranslate"><div class="highlight"><pre><span></span><span class="n">__global__</span> <span class="kt">void</span> <span class="n">softmax</span><span class="p">(</span><span class="kt">float</span><span class="o">*</span> <span class="n">Y</span><span class="p">,</span> <span class="kt">float</span><span class="o">*</span> <span class="n">X</span><span class="p">,</span> <span class="kt">int</span> <span class="n">stride_xm</span><span class="p">,</span> <span class="kt">int</span> <span class="n">stride_ym</span><span class="p">,</span> <span class="kt">int</span> <span class="n">M</span><span class="p">,</span> <span class="kt">int</span> <span class="n">N</span><span class="p">){</span>
<span class="c1">// row index</span>
@@ -232,13 +234,14 @@ In practice, though, we expect less because our kernel will spend some time comp
<span class="kt">bool</span> <span class="n">check</span><span class="p">[</span><span class="n">BLOCK</span><span class="p">]</span> <span class="o">=</span> <span class="n">n</span> <span class="o">&lt;</span> <span class="n">N</span><span class="p">;</span>
<span class="kt">float</span> <span class="n">x</span> <span class="p">[</span><span class="n">BLOCK</span><span class="p">]</span> <span class="o">=</span> <span class="n">check</span> <span class="o">?</span> <span class="o">*</span><span class="nl">px</span> <span class="p">:</span> <span class="o">-</span><span class="n">F32_INFINITY</span><span class="p">;</span>
<span class="c1">// syntax for reduction in Triton is:</span>
<span class="c1">// x[..., OPERATOR, ...]</span>
<span class="c1">// x[:, :, OPERATOR, :, :]</span>
<span class="c1">// ^</span>
<span class="c1">// index</span>
<span class="c1">// The operators currently supported are {min, max, +}</span>
<span class="c1">// where operator is in {min, max, +}</span>
<span class="c1">// for 1D vectors, this is just x[OPERATOR].</span>
<span class="kt">float</span> <span class="n">z</span> <span class="p">[</span><span class="n">BLOCK</span><span class="p">]</span> <span class="o">=</span> <span class="n">x</span> <span class="o">-</span> <span class="n">x</span><span class="p">[</span><span class="n">max</span><span class="p">];</span>
<span class="c1">// The exponential in Triton is fast but approximate</span>
<span class="c1">// (i.e., like __expf in CUDA)</span>
<span class="c1">// Note that exponentials in Triton are fast</span>
<span class="c1">// but approximate (i.e., think __expf in CUDA)</span>
<span class="kt">float</span> <span class="n">num</span> <span class="p">[</span><span class="n">BLOCK</span><span class="p">]</span> <span class="o">=</span> <span class="n">exp</span><span class="p">(</span><span class="n">z</span><span class="p">);</span>
<span class="kt">float</span> <span class="n">denom</span> <span class="o">=</span> <span class="n">num</span><span class="p">[</span><span class="o">+</span><span class="p">];</span>
<span class="c1">// The result of the reduction is now stored in y</span>
@@ -253,9 +256,9 @@ In practice, though, we expect less because our kernel will spend some time comp
</div>
<div class="section" id="torch-bindings">
<h2>Torch Bindings<a class="headerlink" href="#torch-bindings" title="Permalink to this headline"></a></h2>
<p>We need to make sure that BLOCK is the smallest power of two
greater than the number of rows N of the input matrix.
Different values of BLOCK will result in different kernels</p>
<p>Here our torch bindings is quite similar to that of the vector addition mentioned in the previous tutorial.
We just need to make sure that BLOCK is the smallest power of two greater than the number of columns N of the input matrix.
This means that different values of BLOCK will result in different kernels</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">triton</span>
@@ -277,6 +280,7 @@ Different values of BLOCK will result in different kernels</p>
<span class="s2">&quot;&quot;&quot;</span>
<span class="c1"># helper function to get the smaller power-of-two larger than a given number</span>
<span class="k">def</span> <span class="nf">next_power_of_2</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<span class="n">n</span> <span class="o">-=</span> <span class="mi">1</span>
<span class="n">n</span> <span class="o">|=</span> <span class="n">n</span> <span class="o">&gt;&gt;</span> <span class="mi">1</span>
@@ -288,16 +292,20 @@ Different values of BLOCK will result in different kernels</p>
<span class="k">return</span> <span class="n">n</span>
<span class="n">_kernels</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">()</span>
<span class="c1"># kernel caching mechanism</span>
<span class="k">def</span> <span class="nf">make_kernel</span><span class="p">(</span><span class="n">N</span><span class="p">,</span> <span class="n">device</span><span class="p">):</span>
<span class="n">cache</span> <span class="o">=</span> <span class="n">make_kernel</span><span class="o">.</span><span class="n">cache</span>
<span class="c1"># Now are kernels are indexed not only by the provided device but also</span>
<span class="c1"># by the rounded number of columns in the input matrix</span>
<span class="n">BLOCK</span> <span class="o">=</span> <span class="n">next_power_of_2</span><span class="p">(</span><span class="n">N</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="p">(</span><span class="n">BLOCK</span><span class="p">,</span> <span class="n">device</span><span class="p">)</span>
<span class="k">if</span> <span class="n">key</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">_kernels</span><span class="p">:</span>
<span class="k">if</span> <span class="n">key</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">cache</span><span class="p">:</span>
<span class="n">defines</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;BLOCK&#39;</span><span class="p">:</span> <span class="n">BLOCK</span><span class="p">}</span>
<span class="n">_kernels</span><span class="p">[</span><span class="n">key</span><span class="p">]</span> <span class="o">=</span> <span class="n">triton</span><span class="o">.</span><span class="n">kernel</span><span class="p">(</span><span class="n">_src</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">,</span> <span class="n">defines</span><span class="o">=</span><span class="n">defines</span><span class="p">)</span>
<span class="k">return</span> <span class="n">_kernels</span><span class="p">[</span><span class="n">key</span><span class="p">]</span>
<span class="n">cache</span><span class="p">[</span><span class="n">key</span><span class="p">]</span> <span class="o">=</span> <span class="n">triton</span><span class="o">.</span><span class="n">kernel</span><span class="p">(</span><span class="n">_src</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">,</span> <span class="n">defines</span><span class="o">=</span><span class="n">defines</span><span class="p">)</span>
<span class="k">return</span> <span class="n">cache</span><span class="p">[</span><span class="n">key</span><span class="p">]</span>
<span class="n">make_kernel</span><span class="o">.</span><span class="n">cache</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">()</span>
<span class="k">class</span> <span class="nc">_softmax</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">autograd</span><span class="o">.</span><span class="n">Function</span><span class="p">):</span>
@@ -306,11 +314,10 @@ Different values of BLOCK will result in different kernels</p>
<span class="c1"># constraints of the op</span>
<span class="k">assert</span> <span class="n">x</span><span class="o">.</span><span class="n">dtype</span> <span class="o">==</span> <span class="n">torch</span><span class="o">.</span><span class="n">float32</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty_like</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="c1"># *create launch grid*:</span>
<span class="c1"># here we just launch a grid of M programs</span>
<span class="c1"># The launch grid is simple: we have one kernel instance per row of the input matrix</span>
<span class="n">M</span><span class="p">,</span> <span class="n">N</span> <span class="o">=</span> <span class="n">y</span><span class="o">.</span><span class="n">shape</span>
<span class="n">grid</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">opt</span><span class="p">:</span> <span class="p">(</span><span class="n">M</span><span class="p">,</span> <span class="p">)</span>
<span class="c1"># *launch kernel*:</span>
<span class="c1"># Launch kernel</span>
<span class="n">kernel</span> <span class="o">=</span> <span class="n">make_kernel</span><span class="p">(</span><span class="n">N</span><span class="p">,</span> <span class="n">y</span><span class="o">.</span><span class="n">device</span><span class="p">)</span>
<span class="n">kernel</span><span class="p">(</span><span class="n">y</span><span class="o">.</span><span class="n">data_ptr</span><span class="p">(),</span> <span class="n">x</span><span class="o">.</span><span class="n">data_ptr</span><span class="p">(),</span> <span class="n">y</span><span class="o">.</span><span class="n">stride</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="n">x</span><span class="o">.</span><span class="n">stride</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="n">M</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span> <span class="n">grid</span><span class="o">=</span><span class="n">grid</span><span class="p">)</span>
<span class="k">return</span> <span class="n">y</span>
@@ -319,75 +326,63 @@ Different values of BLOCK will result in different kernels</p>
<span class="n">softmax</span> <span class="o">=</span> <span class="n">_softmax</span><span class="o">.</span><span class="n">apply</span>
</pre></div>
</div>
<p>We can use the above softmax function to compute the row-wise softmax of a given matrix.</p>
</div>
<div class="section" id="unit-test">
<h2>Unit Test<a class="headerlink" href="#unit-test" title="Permalink to this headline"></a></h2>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">1823</span><span class="p">,</span> <span class="mi">781</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">)</span>
<p>We make sure that we test our kernel on a matrix with an irregular number of rows and columns.
This will allow us to verify that our padding mechanism works.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">torch</span><span class="o">.</span><span class="n">manual_seed</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">1823</span><span class="p">,</span> <span class="mi">781</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">)</span>
<span class="n">y_tri</span> <span class="o">=</span> <span class="n">softmax</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">y_ref</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">y_tri</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">y_ref</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">allclose</span><span class="p">(</span><span class="n">y_tri</span><span class="p">,</span> <span class="n">y_ref</span><span class="p">))</span>
</pre></div>
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>tensor([[2.0935e-03, 6.4551e-04, 9.8605e-05, ..., 3.3981e-04, 2.7386e-03,
9.1986e-05],
[7.0923e-04, 6.7521e-04, 5.1366e-04, ..., 9.8392e-04, 2.6547e-04,
6.9062e-04],
[1.4032e-04, 5.8826e-04, 1.1694e-03, ..., 6.6423e-04, 1.8178e-04,
6.7049e-04],
...,
[1.1767e-03, 4.2703e-03, 6.0596e-04, ..., 9.5274e-04, 1.1681e-03,
6.4924e-04],
[1.0772e-04, 7.4854e-04, 3.1912e-03, ..., 2.4980e-04, 1.9012e-03,
5.2567e-04],
[2.8518e-03, 8.1899e-04, 7.7046e-04, ..., 1.3403e-03, 5.3167e-04,
4.3268e-04]], device=&#39;cuda:0&#39;)
tensor([[2.0935e-03, 6.4551e-04, 9.8605e-05, ..., 3.3981e-04, 2.7386e-03,
9.1986e-05],
[7.0923e-04, 6.7521e-04, 5.1366e-04, ..., 9.8392e-04, 2.6547e-04,
6.9062e-04],
[1.4032e-04, 5.8826e-04, 1.1694e-03, ..., 6.6423e-04, 1.8178e-04,
6.7049e-04],
...,
[1.1767e-03, 4.2703e-03, 6.0596e-04, ..., 9.5274e-04, 1.1681e-03,
6.4924e-04],
[1.0772e-04, 7.4854e-04, 3.1912e-03, ..., 2.4980e-04, 1.9012e-03,
5.2567e-04],
[2.8518e-03, 8.1899e-04, 7.7046e-04, ..., 1.3403e-03, 5.3167e-04,
4.3268e-04]], device=&#39;cuda:0&#39;)
True
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>True
</pre></div>
</div>
<p>Seems to work!</p>
<p>As expected, the results are identical.</p>
</div>
<div class="section" id="benchmarking">
<h2>Benchmarking<a class="headerlink" href="#benchmarking" title="Permalink to this headline"></a></h2>
<p>Here we will benchmark our operation as a function of the number of columns in the input matrix assuming 4096 rows.
We will then compare its performance against (1) <code class="code docutils literal notranslate"><span class="pre">torch.softmax</span></code> and (2) the <code class="code docutils literal notranslate"><span class="pre">naive_softmax</span></code> defined above.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="n">M</span> <span class="o">=</span> <span class="mi">4096</span>
<span class="n">Ns</span> <span class="o">=</span> <span class="p">[</span><span class="mi">128</span> <span class="o">*</span> <span class="n">i</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">50</span><span class="p">)]</span>
<span class="n">tri_ms</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">ref_ms</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">def_ms</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">Ns</span> <span class="o">=</span> <span class="p">[</span><span class="mi">256</span> <span class="o">*</span> <span class="n">i</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">50</span><span class="p">)]</span>
<span class="n">tri_bw</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">ref_bw</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">def_bw</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">N</span> <span class="ow">in</span> <span class="n">Ns</span><span class="p">:</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="n">M</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">gbps</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">ms</span><span class="p">:</span> <span class="n">x</span><span class="o">.</span><span class="n">nelement</span><span class="p">()</span> <span class="o">*</span> <span class="n">x</span><span class="o">.</span><span class="n">element_size</span><span class="p">()</span> <span class="o">*</span> <span class="mf">1e-9</span> <span class="o">/</span> <span class="p">(</span><span class="n">ms</span> <span class="o">*</span> <span class="mf">1e-3</span><span class="p">)</span>
<span class="n">tri_ms</span> <span class="o">+=</span> <span class="p">[</span><span class="n">gbps</span><span class="p">(</span><span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">do_bench</span><span class="p">(</span><span class="k">lambda</span><span class="p">:</span> <span class="n">softmax</span><span class="p">(</span><span class="n">x</span><span class="p">)))]</span>
<span class="n">ref_ms</span> <span class="o">+=</span> <span class="p">[</span><span class="n">gbps</span><span class="p">(</span><span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">do_bench</span><span class="p">(</span><span class="k">lambda</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)))]</span>
<span class="n">def_ms</span> <span class="o">+=</span> <span class="p">[</span><span class="n">gbps</span><span class="p">(</span><span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">do_bench</span><span class="p">(</span><span class="k">lambda</span><span class="p">:</span> <span class="n">naive_softmax</span><span class="p">(</span><span class="n">x</span><span class="p">)))]</span>
<span class="n">do_bench</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">fn</span><span class="p">:</span> <span class="n">gbps</span><span class="p">(</span><span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">do_bench</span><span class="p">(</span><span class="n">fn</span><span class="p">,</span> <span class="n">warmup</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">rep</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">clear_l2</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="n">tri_bw</span> <span class="o">+=</span> <span class="p">[</span><span class="n">do_bench</span><span class="p">(</span><span class="k">lambda</span><span class="p">:</span> <span class="n">softmax</span><span class="p">(</span><span class="n">x</span><span class="p">))]</span>
<span class="n">ref_bw</span> <span class="o">+=</span> <span class="p">[</span><span class="n">do_bench</span><span class="p">(</span><span class="k">lambda</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">))]</span>
<span class="n">def_bw</span> <span class="o">+=</span> <span class="p">[</span><span class="n">do_bench</span><span class="p">(</span><span class="k">lambda</span><span class="p">:</span> <span class="n">naive_softmax</span><span class="p">(</span><span class="n">x</span><span class="p">))]</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">&#39;N&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">&#39;Bandwidth (GB/s)&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">Ns</span><span class="p">,</span> <span class="n">tri_ms</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Triton&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">Ns</span><span class="p">,</span> <span class="n">ref_ms</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Torch&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">Ns</span><span class="p">,</span> <span class="n">def_ms</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Naive&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">Ns</span><span class="p">,</span> <span class="n">tri_bw</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Triton&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">Ns</span><span class="p">,</span> <span class="n">ref_bw</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Torch&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">Ns</span><span class="p">,</span> <span class="n">def_bw</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Naive&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
<img alt="02 fused softmax" class="sphx-glr-single-img" src="../../_images/sphx_glr_02-fused-softmax_001.png" />
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 5.758 seconds)</p>
<p>In the above plot, we can see that:</p>
<blockquote>
<div><ul class="simple">
<li><p>Triton is 4-5x faster than the naive implementation, which is consistent with our theoretical predictions.</p></li>
<li><p>Triton is significantly faster than <code class="code docutils literal notranslate"><span class="pre">torch.softmax</span></code> for very large input matrices. My guess from looking at the source-code of the <a class="reference external" href="https://github.com/pytorch/pytorch/blob/9409a3a39b7149bb2d833a89e0c944109bef7c27/caffe2/operators/softmax_ops.cu#L240">PyTorch kernel</a> is that PyTorch only partially fuses the computation of the softmax.
This means that when temporary data is too large to fit entirely in the GPUs cache it transfers almost twice the amount of data necessary.
Note that our Triton kernel is not only faster than PyTorchs CUDA kernel, it is also <strong>easier to read, understand and maintain</strong>.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 33.773 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>