[CORE] Fixed several issues that arose in the development of the

torch-blocksparse package:

* Now using warp shuffle in reductions when possible
* Various bugfixes in layout inference
* Added INFINITY, exponential and select
* Better error messages for unimplemented constructs
This commit is contained in:
Philippe Tillet
2020-03-31 18:55:31 -04:00
committed by Philippe Tillet
parent ac26fbdc1f
commit 3304629de9
33 changed files with 374 additions and 135 deletions

View File

@@ -196,8 +196,9 @@ void generator::visit_value(ir::value* v) {
BasicBlock *current = builder_->GetInsertBlock();
auto *inst = dynamic_cast<ir::instruction*>(v);
if(inst && !dynamic_cast<ir::phi_node*>(v))
for(ir::value *op: inst->ops())
for(ir::value *op: inst->ops()){
visit_value(op);
}
// change insert point for phi node
builder_->SetInsertPoint(current);
auto *phi = dynamic_cast<ir::phi_node*>(v);
@@ -547,6 +548,24 @@ void generator::visit_get_num_program_inst(ir::get_num_program_inst* np) {
vmap_[np] = ret;
}
void generator::visit_exp_inst(ir::exp_inst* x){
distributed_tile *arg = (distributed_tile*)tmap_.at(x->get_operand(0));
// Function *fn = builder_->GetInsertBlock()->getParent();
// Module *module = fn->getParent();
// Type *ty = llvm_type(x->get_type()->get_scalar_ty(), *ctx_);
// Function *ex2 = Intrinsic::getDeclaration(module, Intrinsic::nvvm_ex2_approx_ftz_f, {ty});
Constant *log2e = ConstantFP::get(builder_->getFloatTy(), 1.4426950408889634);
FunctionType *fn_ty = FunctionType::get(builder_->getFloatTy(), {builder_->getFloatTy()}, false);
InlineAsm *ex2 = InlineAsm::get(fn_ty, "ex2.approx.ftz.f32 $0, $1;", "=f,f", false);
for_each(x, [&](indices_t idx){
Value *ex2arg = builder_->CreateFMul(arg->get_value(idx), log2e);
set_value(x, idx, builder_->CreateCall(ex2, {ex2arg}));
});
}
void generator::visit_atomic_cas_inst(ir::atomic_cas_inst* cas) {
BasicBlock *current = builder_->GetInsertBlock();
Module *module = current->getModule();
@@ -587,6 +606,7 @@ void generator::visit_atomic_exch_inst(ir::atomic_exch_inst* xchg) {
BasicBlock *tid_0_bb = BasicBlock::Create(*ctx_, "tid_0", current->getParent());
BasicBlock *tid_0_done_bb = BasicBlock::Create(*ctx_, "tid_0_done", current->getParent());
tgt_->add_memfence(module, *builder_);
tgt_->add_barrier(module, *builder_);
builder_->CreateCondBr(pred, tid_0_bb, tid_0_done_bb);
builder_->SetInsertPoint(tid_0_bb);
builder_->CreateAtomicRMW(AtomicRMWInst::Xchg, rmw_ptr, rmw_val,
@@ -825,24 +845,111 @@ void generator::visit_reduce_inst(ir::reduce_inst* x) {
ir::value *arg = x->get_operand(0);
distributed_tile* arg_tile = (distributed_tile*)tmap_.at(arg);
ir::reduce_inst::op_t op = x->get_op();
unsigned axis = x->get_axis();
Type *fp32_ty = builder_->getFloatTy();
FunctionType *fmaxmin_ty = FunctionType::get(fp32_ty, {fp32_ty, fp32_ty}, false);
InlineAsm *fmin = InlineAsm::get(fmaxmin_ty, "min.ftz.f32 $0, $1, $2;", "=f,f,f", false);
InlineAsm *fmax = InlineAsm::get(fmaxmin_ty, "max.ftz.f32 $0, $1, $2;", "=f,f,f", false);
auto accumulate = [&](Value* x, Value *y) -> Value* {
switch(op) {
case ir::reduce_inst::ADD: return builder_->CreateAdd(x, y);
case ir::reduce_inst::SUB: return builder_->CreateSub(x, y);
case ir::reduce_inst::MAX: return builder_->CreateMaximum(x, y);
case ir::reduce_inst::MIN: return builder_->CreateMinimum(x, y);
case ir::reduce_inst::MAX:{
if(x->getType()->isIntegerTy())
return builder_->CreateSelect(builder_->CreateICmpSGE(x, y), x, y);
else
return builder_->CreateMaxNum(x, y);
}
case ir::reduce_inst::MIN:{
if(x->getType()->isIntegerTy())
return builder_->CreateSelect(builder_->CreateICmpSLE(x, y), x, y);
else
return builder_->CreateMinNum(x, y);
}
case ir::reduce_inst::FADD: return builder_->CreateFAdd(x, y);
case ir::reduce_inst::FSUB: return builder_->CreateFSub(x, y);
case ir::reduce_inst::FMAX: return builder_->CreateSelect(builder_->CreateFCmpOGT(x, y), x, y);
case ir::reduce_inst::FMIN: return builder_->CreateSelect(builder_->CreateFCmpOLT(x, y), x, y);
default: break;
case ir::reduce_inst::FMAX: return builder_->CreateCall(fmax, {x, y});
case ir::reduce_inst::FMIN: return builder_->CreateCall(fmin, {x, y});
default: assert(false); return nullptr;
}
assert(false);
return nullptr;
};
Value *neutral;
switch(op) {
case ir::reduce_inst::ADD: neutral = builder_->getInt32(0); break;
case ir::reduce_inst::SUB: neutral = builder_->getInt32(0); break;
case ir::reduce_inst::MAX: neutral = builder_->getInt32(INT32_MIN); break;
case ir::reduce_inst::MIN: neutral = builder_->getInt32(INT32_MAX); break;
case ir::reduce_inst::FADD: neutral = ConstantFP::get(arg_tile->get_ty(), 0); break;
case ir::reduce_inst::FSUB: neutral = ConstantFP::get(arg_tile->get_ty(), 0); break;
case ir::reduce_inst::FMAX: neutral = ConstantFP::get(arg_tile->get_ty(), -INFINITY); break;
case ir::reduce_inst::FMIN: neutral = ConstantFP::get(arg_tile->get_ty(), INFINITY); break;
default: assert(false); break;
}
analysis::data_layout* arg_layout = layouts_->get(arg);
if(auto* L = dynamic_cast<analysis::scanline_layout*>(arg_layout)){
bool can_optimize = true;
for(size_t r = 0; r < L->get_rank(); r++){
if(r != axis)
can_optimize = can_optimize && (L->mts(r) == L->get_shape()[r]);
}
if(can_optimize){
Value *thread_acc = nullptr;
// reduce within thread
arg_tile->for_each([&](indices_t idx) {
Value *current = arg_tile->get_value(idx);
if(thread_acc == nullptr)
thread_acc = current;
else
thread_acc = accumulate(thread_acc, current);
});
// reduce within wrap
FunctionType *fn_ty = FunctionType::get(thread_acc->getType(), {thread_acc->getType(), builder_->getInt32Ty()}, false);
InlineAsm *shfl_xor = InlineAsm::get(fn_ty, "shfl.sync.bfly.b32 $0, $1, $2, 0x1f, 0xffffffff;", "=f,f,r", false);
Value *warp_acc = thread_acc;
for(int i = 16; i > 0; i >>= 1)
warp_acc = accumulate(warp_acc, builder_->CreateCall(shfl_xor, {warp_acc, builder_->getInt32(i)}));
// shared memory pointer
unsigned addr_space = sh_mem_ptr_->getType()->getPointerAddressSpace();
Type *res_ty = arg_tile->get_ty();
Value *sh_mem_ptr = builder_->CreateBitCast(sh_mem_ptr_, PointerType::get(res_ty, addr_space));
Value* u_thread_id = tgt_->get_local_id(builder_->GetInsertBlock()->getModule(), *builder_, 0);
Value* warp_id = builder_->CreateUDiv(u_thread_id, builder_->getInt32(32));
Value *write_ptr = builder_->CreateGEP(sh_mem_ptr, warp_id);
// store warp result in shared memory
tgt_->add_barrier(mod_, *builder_);
builder_->CreateStore(warp_acc, write_ptr);
tgt_->add_barrier(mod_, *builder_);
// accumulate all warps
Value *load_ptr = builder_->CreateGEP(sh_mem_ptr, u_thread_id);
Value* is_first_warp = builder_->CreateICmpEQ(warp_id, builder_->getInt32(0));
BasicBlock* bb_final_acc = BasicBlock::Create(*ctx_, "bb_final_acc", builder_->GetInsertBlock()->getParent());
BasicBlock* bb_final_acc_done = BasicBlock::Create(*ctx_, "bb_final_acc_done", builder_->GetInsertBlock()->getParent());
builder_->CreateCondBr(is_first_warp, bb_final_acc, bb_final_acc_done);
builder_->SetInsertPoint(bb_final_acc);
Value* final_val = builder_->CreateLoad(load_ptr);
for(int i = (num_warps_+1)/2; i > 0; i >>= 1)
final_val = accumulate(final_val, builder_->CreateCall(shfl_xor, {final_val, builder_->getInt32(i)}));
builder_->CreateStore(final_val, load_ptr);
builder_->CreateBr(bb_final_acc_done);
// // store first warp done
builder_->SetInsertPoint(bb_final_acc_done);
// write back
tgt_->add_barrier(mod_, *builder_);
final_val = builder_->CreateLoad(sh_mem_ptr);
for_each(x, [&](indices_t idx) {
set_value(x, idx, final_val);
});
return;
}
}
// reduce within thread
unsigned axis = x->get_axis();
arg_tile->for_each([&](indices_t idx) {
indices_t pidx = idx;
pidx[axis] = builder_->getInt32(0);
@@ -861,7 +968,7 @@ void generator::visit_reduce_inst(ir::reduce_inst* x) {
unsigned depth = stile->get_shapes()[axis];
unsigned addr_space = sh_mem_ptr_->getType()->getPointerAddressSpace();
Type *res_ty = builder_->getFloatTy();
Type *res_ty = arg_tile->get_ty();
Value *base_ptr = builder_->CreateBitCast(sh_mem_ptr_, PointerType::get(res_ty, addr_space));
for(auto& x: partial) {
// current element being computed
@@ -891,10 +998,12 @@ void generator::visit_reduce_inst(ir::reduce_inst* x) {
// accumulate
result = accumulate(result, next);
// write back
tgt_->add_barrier(mod_, *builder_);
builder_->CreateStore(result, write_ptr);
}
}
tgt_->add_barrier(mod_, *builder_);
// write back
for_each(x, [&](indices_t idx) {
indices_t red_idx = idx;
@@ -1169,8 +1278,9 @@ void generator::visit_function(ir::function* fn) {
}
builder_->SetInsertPoint((BasicBlock*)vmap_[fn->blocks()[0]]);
// initialize layouts
for(auto x: layouts_->get_all())
for(auto x: layouts_->get_all()){
visit_layout(x.second);
}
// generate LLVM-IR code
for(ir::basic_block *block: fn->blocks())
visit_basic_block(block);

View File

@@ -158,7 +158,6 @@ tile *machine_distributed_layout::create(ir::value *v) {
return false;
};
std::sort(order.begin(), order.end(), cmp);
return new distributed_tile(ty, shapes, order, axes, *builder_);
}

View File

@@ -135,13 +135,13 @@ Value* shared_tile::shared_offset(llvm::IRBuilder<> &builder, const shapes_t& sh
const std::vector<int>& perm, const std::vector<int>& order,
indices_t idx) {
// strides
std::vector<Value*> strides(order.size());
std::vector<Value*> strides(shapes.size(), builder.getInt32(0));
strides[order[0]] = builder.getInt32(1);
for(size_t i = 1; i < idx.size(); i++)
strides[order[i]] = builder.CreateMul(strides[order[i-1]], builder.getInt32(shapes[order[i-1]]));
// result
Value *result = builder.getInt32(0);
for(size_t i = 0; i < strides.size(); i++)
for(size_t i = 0; i < idx.size(); i++)
result = builder.CreateAdd(result, builder.CreateMul(idx[perm[i]], strides[i]));
return result;
}