[Triton-MLIR][BACKEND] Add elementwise ops and tests (#804)

Co-authored-by: Keren Zhou <kerenzhou@openai.com>
This commit is contained in:
ben-zhang-609
2022-10-28 13:26:29 +08:00
committed by GitHub
parent 3b80801dff
commit 3685194456
9 changed files with 616 additions and 60 deletions

View File

@@ -1,6 +1,7 @@
#ifndef TRITON_TARGET_LLVMIRTRANSLATION_H #ifndef TRITON_TARGET_LLVMIRTRANSLATION_H
#define TRITON_TARGET_LLVMIRTRANSLATION_H #define TRITON_TARGET_LLVMIRTRANSLATION_H
#include <memory> #include <memory>
#include <vector>
namespace llvm { namespace llvm {
class Module; class Module;
@@ -14,6 +15,11 @@ class ModuleOp;
namespace mlir { namespace mlir {
namespace triton { namespace triton {
// add external dependent libs
void addExternalLibs(mlir::ModuleOp &module,
const std::vector<std::string> &names,
const std::vector<std::string> &paths);
// Translate TritonGPU dialect to LLVMIR, return null if failed. // Translate TritonGPU dialect to LLVMIR, return null if failed.
std::unique_ptr<llvm::Module> std::unique_ptr<llvm::Module>
translateTritonGPUToLLVMIR(llvm::LLVMContext *llvmContext, translateTritonGPUToLLVMIR(llvm::LLVMContext *llvmContext,

View File

@@ -1792,17 +1792,15 @@ struct ExtractSliceOpConversion
} }
}; };
// TODO: rewrite Ternary/Binary/Unary as Elementwise
// A CRTP style of base class. // A CRTP style of base class.
template <typename SourceOp, typename DestOp, typename ConcreteT> template <typename SourceOp, typename DestOp, typename ConcreteT>
class BinaryOpConversionBase class ElementwiseOpConversionBase
: public ConvertTritonGPUOpToLLVMPattern<SourceOp> { : public ConvertTritonGPUOpToLLVMPattern<SourceOp> {
public: public:
using OpAdaptor = typename SourceOp::Adaptor; using OpAdaptor = typename SourceOp::Adaptor;
explicit BinaryOpConversionBase(LLVMTypeConverter &typeConverter, explicit ElementwiseOpConversionBase(LLVMTypeConverter &typeConverter,
PatternBenefit benefit = 1) PatternBenefit benefit = 1)
: ConvertTritonGPUOpToLLVMPattern<SourceOp>(typeConverter, benefit) {} : ConvertTritonGPUOpToLLVMPattern<SourceOp>(typeConverter, benefit) {}
LogicalResult LogicalResult
@@ -1817,7 +1815,8 @@ public:
auto resultLayout = auto resultLayout =
resultTy.getEncoding().template dyn_cast<BlockedEncodingAttr>(); resultTy.getEncoding().template dyn_cast<BlockedEncodingAttr>();
auto resultShape = resultTy.getShape(); auto resultShape = resultTy.getShape();
assert(resultLayout && "Unexpected resultLayout in BinaryOpConversion"); assert(resultLayout &&
"Unexpected resultLayout in ElementwiseOpConversionBase");
unsigned elems = resultLayout.getElemsPerThread(resultShape); unsigned elems = resultLayout.getElemsPerThread(resultShape);
Type elemTy = Type elemTy =
this->getTypeConverter()->convertType(resultTy.getElementType()); this->getTypeConverter()->convertType(resultTy.getElementType());
@@ -1825,43 +1824,54 @@ public:
Type structTy = LLVM::LLVMStructType::getLiteral(this->getContext(), types); Type structTy = LLVM::LLVMStructType::getLiteral(this->getContext(), types);
auto *concreteThis = static_cast<const ConcreteT *>(this); auto *concreteThis = static_cast<const ConcreteT *>(this);
auto lhss = this->getElementsFromStruct(loc, concreteThis->getLhs(adaptor), auto operands = getOperands(rewriter, adaptor, elems, loc);
rewriter);
auto rhss = this->getElementsFromStruct(loc, concreteThis->getRhs(adaptor),
rewriter);
SmallVector<Value> resultVals(elems); SmallVector<Value> resultVals(elems);
for (unsigned i = 0; i < elems; ++i) { for (unsigned i = 0; i < elems; ++i) {
resultVals[i] = concreteThis->createDestOp(op, rewriter, elemTy, lhss[i], resultVals[i] = concreteThis->createDestOp(op, adaptor, rewriter, elemTy,
rhss[i], loc); operands[i], loc);
} }
Value view = getStructFromElements(loc, resultVals, rewriter, structTy); Value view = getStructFromElements(loc, resultVals, rewriter, structTy);
rewriter.replaceOp(op, view); rewriter.replaceOp(op, view);
return success(); return success();
} }
protected:
SmallVector<SmallVector<Value>>
getOperands(ConversionPatternRewriter &rewriter, OpAdaptor adaptor,
const unsigned elems, Location loc) const {
SmallVector<SmallVector<Value>> operands(elems);
for (auto operand : adaptor.getOperands()) {
auto sub_operands = this->getElementsFromStruct(loc, operand, rewriter);
for (int i = 0; i < elems; ++i) {
operands[i].push_back(sub_operands[i]);
}
}
return operands;
}
}; };
template <typename SourceOp, typename DestOp> template <typename SourceOp, typename DestOp>
struct BinaryOpConversion struct ElementwiseOpConversion
: public BinaryOpConversionBase<SourceOp, DestOp, : public ElementwiseOpConversionBase<
BinaryOpConversion<SourceOp, DestOp>> { SourceOp, DestOp, ElementwiseOpConversion<SourceOp, DestOp>> {
using Base =
ElementwiseOpConversionBase<SourceOp, DestOp,
ElementwiseOpConversion<SourceOp, DestOp>>;
using Base::Base;
using OpAdaptor = typename Base::OpAdaptor;
explicit BinaryOpConversion(LLVMTypeConverter &typeConverter, explicit ElementwiseOpConversion(LLVMTypeConverter &typeConverter,
PatternBenefit benefit = 1) PatternBenefit benefit = 1)
: BinaryOpConversionBase<SourceOp, DestOp, : ElementwiseOpConversionBase<SourceOp, DestOp, ElementwiseOpConversion>(
BinaryOpConversion<SourceOp, DestOp>>(
typeConverter, benefit) {} typeConverter, benefit) {}
using OpAdaptor = typename SourceOp::Adaptor;
// An interface to support variant DestOp builder. // An interface to support variant DestOp builder.
DestOp createDestOp(SourceOp op, ConversionPatternRewriter &rewriter, DestOp createDestOp(SourceOp op, OpAdaptor adaptor,
Type elemTy, Value lhs, Value rhs, Location loc) const { ConversionPatternRewriter &rewriter, Type elemTy,
return rewriter.create<DestOp>(loc, elemTy, lhs, rhs); ValueRange operands, Location loc) const {
return rewriter.create<DestOp>(loc, elemTy, operands,
adaptor.getAttributes().getValue());
} }
// Get the left operand of the op.
Value getLhs(OpAdaptor adaptor) const { return adaptor.getLhs(); }
// Get the right operand of the op.
Value getRhs(OpAdaptor adaptor) const { return adaptor.getRhs(); }
}; };
// //
@@ -2015,25 +2025,22 @@ struct UnaryOpConversion
// //
struct CmpIOpConversion struct CmpIOpConversion
: public BinaryOpConversionBase<triton::gpu::CmpIOp, LLVM::ICmpOp, : public ElementwiseOpConversionBase<triton::gpu::CmpIOp, LLVM::ICmpOp,
CmpIOpConversion> { CmpIOpConversion> {
explicit CmpIOpConversion(LLVMTypeConverter &typeConverter, using Base = ElementwiseOpConversionBase<triton::gpu::CmpIOp, LLVM::ICmpOp,
PatternBenefit benefit = 1) CmpIOpConversion>;
: BinaryOpConversionBase(typeConverter, benefit) {} using Base::Base;
using Adaptor = typename Base::OpAdaptor;
// An interface to support variant DestOp builder. // An interface to support variant DestOp builder.
LLVM::ICmpOp createDestOp(triton::gpu::CmpIOp op, LLVM::ICmpOp createDestOp(triton::gpu::CmpIOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter, Type elemTy, ConversionPatternRewriter &rewriter, Type elemTy,
Value lhs, Value rhs, Location loc) const { ValueRange operands, Location loc) const {
return rewriter.create<LLVM::ICmpOp>( return rewriter.create<LLVM::ICmpOp>(
loc, elemTy, ArithCmpIPredicteToLLVM(op.predicate()), lhs, rhs); loc, elemTy, ArithCmpIPredicteToLLVM(op.predicate()), operands[0],
operands[1]);
} }
// Get the left operand of the op.
Value getLhs(OpAdaptor adaptor) const { return adaptor.lhs(); }
// Get the right operand of the op.
Value getRhs(OpAdaptor adaptor) const { return adaptor.rhs(); }
static LLVM::ICmpPredicate static LLVM::ICmpPredicate
ArithCmpIPredicteToLLVM(arith::CmpIPredicate predicate) { ArithCmpIPredicteToLLVM(arith::CmpIPredicate predicate) {
switch (predicate) { switch (predicate) {
@@ -2059,25 +2066,22 @@ struct CmpIOpConversion
}; };
struct CmpFOpConversion struct CmpFOpConversion
: public BinaryOpConversionBase<triton::gpu::CmpFOp, LLVM::FCmpOp, : public ElementwiseOpConversionBase<triton::gpu::CmpFOp, LLVM::FCmpOp,
CmpFOpConversion> { CmpFOpConversion> {
explicit CmpFOpConversion(LLVMTypeConverter &typeConverter, using Base = ElementwiseOpConversionBase<triton::gpu::CmpFOp, LLVM::FCmpOp,
PatternBenefit benefit = 1) CmpFOpConversion>;
: BinaryOpConversionBase(typeConverter, benefit) {} using Base::Base;
using Adaptor = typename Base::OpAdaptor;
// An interface to support variant DestOp builder. // An interface to support variant DestOp builder.
LLVM::FCmpOp createDestOp(triton::gpu::CmpFOp op, LLVM::FCmpOp createDestOp(triton::gpu::CmpFOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter, Type elemTy, ConversionPatternRewriter &rewriter, Type elemTy,
Value lhs, Value rhs, Location loc) const { ValueRange operands, Location loc) const {
return rewriter.create<LLVM::FCmpOp>( return rewriter.create<LLVM::FCmpOp>(
loc, elemTy, ArithCmpFPredicteToLLVM(op.predicate()), lhs, rhs); loc, elemTy, ArithCmpFPredicteToLLVM(op.predicate()), operands[0],
operands[1]);
} }
// Get the left operand of the op.
Value getLhs(OpAdaptor adaptor) const { return adaptor.lhs(); }
// Get the right operand of the op.
Value getRhs(OpAdaptor adaptor) const { return adaptor.rhs(); }
static LLVM::FCmpPredicate static LLVM::FCmpPredicate
ArithCmpFPredicteToLLVM(arith::CmpFPredicate predicate) { ArithCmpFPredicteToLLVM(arith::CmpFPredicate predicate) {
switch (predicate) { switch (predicate) {
@@ -4081,6 +4085,90 @@ struct InsertSliceAsyncOpConversion
} }
}; };
struct ExtElemwiseOpConversion
: public ElementwiseOpConversionBase<
triton::ExtElemwiseOp, LLVM::LLVMFuncOp, ExtElemwiseOpConversion> {
using Base =
ElementwiseOpConversionBase<triton::ExtElemwiseOp, LLVM::LLVMFuncOp,
ExtElemwiseOpConversion>;
using Base::Base;
using Adaptor = typename Base::OpAdaptor;
Value createDestOp(triton::ExtElemwiseOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter, Type elemTy,
ValueRange operands, Location loc) const {
StringRef funcName = op.symbol();
if (funcName.empty())
llvm::errs() << "ExtElemwiseOpConversion";
Type funcType = getFunctionType(elemTy, operands);
LLVM::LLVMFuncOp funcOp =
appendOrGetFuncOp(rewriter, op, funcName, funcType);
return rewriter.create<LLVM::CallOp>(loc, funcOp, operands).getResult(0);
}
private:
Type getFunctionType(Type resultType, ValueRange operands) const {
SmallVector<Type> operandTypes(operands.getTypes());
return LLVM::LLVMFunctionType::get(resultType, operandTypes);
}
LLVM::LLVMFuncOp appendOrGetFuncOp(ConversionPatternRewriter &rewriter,
triton::ExtElemwiseOp op,
StringRef funcName, Type funcType) const {
using LLVM::LLVMFuncOp;
auto funcAttr = StringAttr::get(op->getContext(), funcName);
Operation *funcOp = SymbolTable::lookupNearestSymbolFrom(op, funcAttr);
if (funcOp)
return cast<LLVMFuncOp>(*funcOp);
mlir::OpBuilder b(op->getParentOfType<LLVMFuncOp>());
auto ret = b.create<LLVMFuncOp>(op->getLoc(), funcName, funcType);
ret.getOperation()->setAttr(
"libname", StringAttr::get(op->getContext(), op.libname()));
ret.getOperation()->setAttr(
"libpath", StringAttr::get(op->getContext(), op.libpath()));
return ret;
}
};
struct FDivOpConversion
: ElementwiseOpConversionBase<mlir::arith::DivFOp, LLVM::InlineAsmOp,
FDivOpConversion> {
using Base = ElementwiseOpConversionBase<mlir::arith::DivFOp,
LLVM::InlineAsmOp, FDivOpConversion>;
using Base::Base;
using Adaptor = typename Base::OpAdaptor;
Value createDestOp(mlir::arith::DivFOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter, Type elemTy,
ValueRange operands, Location loc) const {
PTXBuilder ptxBuilder;
auto &fdiv = *ptxBuilder.create<PTXInstr>("div");
unsigned bitwidth = elemTy.getIntOrFloatBitWidth();
if (32 == bitwidth) {
fdiv.o("full").o("f32");
auto res = ptxBuilder.newOperand("=r");
auto lhs = ptxBuilder.newOperand(operands[0], "r");
auto rhs = ptxBuilder.newOperand(operands[1], "r");
fdiv(res, lhs, rhs);
} else if (64 == bitwidth) {
fdiv.o("rn").o("f64");
auto res = ptxBuilder.newOperand("=l");
auto lhs = ptxBuilder.newOperand(operands[0], "l");
auto rhs = ptxBuilder.newOperand(operands[1], "l");
fdiv(res, lhs, rhs);
} else {
assert(0 && bitwidth && "not supported");
}
Value ret = ptxBuilder.launch(rewriter, loc, elemTy, false);
return ret;
}
};
void populateTritonToLLVMPatterns(mlir::LLVMTypeConverter &typeConverter, void populateTritonToLLVMPatterns(mlir::LLVMTypeConverter &typeConverter,
RewritePatternSet &patterns, int numWarps, RewritePatternSet &patterns, int numWarps,
AxisInfoAnalysis &axisInfoAnalysis, AxisInfoAnalysis &axisInfoAnalysis,
@@ -4093,12 +4181,13 @@ void populateTritonToLLVMPatterns(mlir::LLVMTypeConverter &typeConverter,
patterns.add<AsyncWaitOpConversion>(typeConverter, benefit); patterns.add<AsyncWaitOpConversion>(typeConverter, benefit);
#define POPULATE_TERNARY_OP(SRC_OP, DST_OP) \ #define POPULATE_TERNARY_OP(SRC_OP, DST_OP) \
patterns.add<TernaryOpConversion<SRC_OP, DST_OP>>(typeConverter, benefit); patterns.add<ElementwiseOpConversion<SRC_OP, DST_OP>>(typeConverter, benefit);
POPULATE_TERNARY_OP(triton::gpu::SelectOp, LLVM::SelectOp); POPULATE_TERNARY_OP(triton::gpu::SelectOp, LLVM::SelectOp);
#undef POPULATE_TERNARY_OP #undef POPULATE_TERNARY_OP
#define POPULATE_BINARY_OP(SRC_OP, DST_OP) \ #define POPULATE_BINARY_OP(SRC_OP, DST_OP) \
patterns.add<BinaryOpConversion<SRC_OP, DST_OP>>(typeConverter, benefit); patterns.add<ElementwiseOpConversion<SRC_OP, DST_OP>>(typeConverter, benefit);
POPULATE_BINARY_OP(arith::SubIOp, LLVM::SubOp) // - POPULATE_BINARY_OP(arith::SubIOp, LLVM::SubOp) // -
POPULATE_BINARY_OP(arith::SubFOp, LLVM::FSubOp) POPULATE_BINARY_OP(arith::SubFOp, LLVM::FSubOp)
POPULATE_BINARY_OP(arith::AddIOp, LLVM::AddOp) // + POPULATE_BINARY_OP(arith::AddIOp, LLVM::AddOp) // +
@@ -4122,7 +4211,7 @@ void populateTritonToLLVMPatterns(mlir::LLVMTypeConverter &typeConverter,
patterns.add<CmpIOpConversion>(typeConverter, benefit); patterns.add<CmpIOpConversion>(typeConverter, benefit);
patterns.add<CmpFOpConversion>(typeConverter, benefit); patterns.add<CmpFOpConversion>(typeConverter, benefit);
#define POPULATE_UNARY_OP(SRC_OP, DST_OP) \ #define POPULATE_UNARY_OP(SRC_OP, DST_OP) \
patterns.add<UnaryOpConversion<SRC_OP, DST_OP>>(typeConverter, benefit); patterns.add<ElementwiseOpConversion<SRC_OP, DST_OP>>(typeConverter, benefit);
POPULATE_UNARY_OP(arith::TruncIOp, LLVM::TruncOp) POPULATE_UNARY_OP(arith::TruncIOp, LLVM::TruncOp)
POPULATE_UNARY_OP(arith::TruncFOp, LLVM::FPTruncOp) POPULATE_UNARY_OP(arith::TruncFOp, LLVM::FPTruncOp)
POPULATE_UNARY_OP(arith::ExtSIOp, LLVM::SExtOp) POPULATE_UNARY_OP(arith::ExtSIOp, LLVM::SExtOp)
@@ -4135,8 +4224,17 @@ void populateTritonToLLVMPatterns(mlir::LLVMTypeConverter &typeConverter,
POPULATE_UNARY_OP(triton::BitcastOp, LLVM::BitcastOp) POPULATE_UNARY_OP(triton::BitcastOp, LLVM::BitcastOp)
POPULATE_UNARY_OP(triton::IntToPtrOp, LLVM::IntToPtrOp) POPULATE_UNARY_OP(triton::IntToPtrOp, LLVM::IntToPtrOp)
POPULATE_UNARY_OP(triton::PtrToIntOp, LLVM::PtrToIntOp) POPULATE_UNARY_OP(triton::PtrToIntOp, LLVM::PtrToIntOp)
POPULATE_UNARY_OP(math::LogOp, math::LogOp)
POPULATE_UNARY_OP(math::CosOp, math::CosOp)
POPULATE_UNARY_OP(math::SinOp, math::SinOp)
POPULATE_UNARY_OP(math::SqrtOp, math::SqrtOp)
POPULATE_UNARY_OP(math::ExpOp, math::ExpOp)
#undef POPULATE_UNARY_OP #undef POPULATE_UNARY_OP
patterns.add<FDivOpConversion>(typeConverter, benefit);
patterns.add<ExtElemwiseOpConversion>(typeConverter, benefit);
patterns.add<BroadcastOpConversion>(typeConverter, benefit); patterns.add<BroadcastOpConversion>(typeConverter, benefit);
patterns.add<ReduceOpConversion>(typeConverter, allocation, smem, benefit); patterns.add<ReduceOpConversion>(typeConverter, allocation, smem, benefit);
patterns.add<ConvertLayoutOpConversion>(typeConverter, allocation, smem, patterns.add<ConvertLayoutOpConversion>(typeConverter, allocation, smem,

View File

@@ -16,6 +16,9 @@
#include "triton/Conversion/TritonGPUToLLVM/TritonGPUToLLVM.h" #include "triton/Conversion/TritonGPUToLLVM/TritonGPUToLLVM.h"
#include "triton/tools/sys/getenv.hpp" #include "triton/tools/sys/getenv.hpp"
#include "llvm/IR/Constants.h" #include "llvm/IR/Constants.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/Linker/Linker.h"
#include "llvm/Support/SourceMgr.h"
namespace mlir { namespace mlir {
namespace triton { namespace triton {
@@ -148,13 +151,80 @@ translateTritonGPUToLLVMIR(llvm::LLVMContext *llvmContext,
return nullptr; return nullptr;
} }
std::map<std::string, std::string> extern_libs;
SmallVector<LLVM::LLVMFuncOp> funcs;
module.walk([&](LLVM::LLVMFuncOp func) {
if (func.isExternal())
funcs.push_back(func);
});
for (auto &func : funcs) {
if (func.getOperation()->hasAttr("libname")) {
auto name =
func.getOperation()->getAttr("libname").dyn_cast<StringAttr>();
auto path =
func.getOperation()->getAttr("libpath").dyn_cast<StringAttr>();
if (name) {
std::string lib_name = name.str();
extern_libs[lib_name] = path.str();
}
}
}
if (module.getOperation()->hasAttr("triton_gpu.externs")) {
auto dict = module.getOperation()
->getAttr("triton_gpu.externs")
.dyn_cast<DictionaryAttr>();
for (auto &attr : dict) {
extern_libs[attr.getName().strref().trim().str()] =
attr.getValue().dyn_cast<StringAttr>().strref().trim().str();
}
}
auto llvmir = translateLLVMToLLVMIR(llvmContext, module); auto llvmir = translateLLVMToLLVMIR(llvmContext, module);
if (!llvmir) { if (!llvmir) {
llvm::errs() << "Translate to LLVM IR failed"; llvm::errs() << "Translate to LLVM IR failed";
return nullptr;
}
llvm::SMDiagnostic err;
for (auto &lib : extern_libs) {
auto ext_mod = llvm::parseIRFile(lib.second, err, *llvmContext);
if (!ext_mod) {
llvm::errs() << "Failed to load extern lib " << lib.first;
return nullptr;
}
ext_mod->setTargetTriple(llvmir->getTargetTriple());
ext_mod->setDataLayout(llvmir->getDataLayout());
if (llvm::Linker::linkModules(*llvmir, std::move(ext_mod))) {
llvm::errs() << "Failed to link extern lib " << lib.first;
return nullptr;
}
} }
return llvmir; return llvmir;
} }
void addExternalLibs(mlir::ModuleOp &module,
const std::vector<std::string> &names,
const std::vector<std::string> &paths) {
if (names.empty() || names.size() != paths.size())
return;
llvm::SmallVector<NamedAttribute, 2> attrs;
for (size_t i = 0; i < names.size(); ++i) {
auto name = StringAttr::get(module->getContext(), names[i]);
auto path = StringAttr::get(module->getContext(), paths[i]);
NamedAttribute attr(name, path);
attrs.push_back(attr);
}
DictionaryAttr dict = DictionaryAttr::get(module->getContext(), attrs);
module.getOperation()->setAttr("triton_gpu.externs", dict);
return;
}
} // namespace triton } // namespace triton
} // namespace mlir } // namespace mlir

View File

@@ -1335,6 +1335,12 @@ void init_triton_translation(py::module &m) {
py::bytes bytes(cubin); py::bytes bytes(cubin);
return bytes; return bytes;
}); });
m.def("add_external_libs",
[](mlir::ModuleOp &op, const std::vector<std::string> &names,
const std::vector<std::string> &paths) {
::mlir::triton::addExternalLibs(op, names, paths);
});
} }
void init_triton(py::module &m) { void init_triton(py::module &m) {

View File

@@ -0,0 +1,189 @@
import tempfile
from inspect import Parameter, Signature
import _testcapi
import pytest
import torch
from torch.testing import assert_close
import triton
import triton.language as tl
torch_type = {
"bool": torch.bool,
"int32": torch.int32,
"float32": torch.float32,
"float64": torch.float64
}
torch_ops = {
"log": "log",
"cos": "cos",
"sin": "sin",
"sqrt": "sqrt",
"abs": "abs",
"exp": "exp",
"sigmoid": "sigmoid",
"umulhi": None,
"cdiv": None,
"fdiv": "div",
"minimum": "minimum",
"maximum": "maximum",
"where": "where",
}
libdevice = '/usr/local/cuda/nvvm/libdevice/libdevice.10.bc'
def get_tensor(shape, data_type, b_positive=False):
x = None
if data_type.startswith('int'):
x = torch.randint(2**31 - 1, shape, dtype=torch_type[data_type], device='cuda')
elif data_type.startswith('bool'):
x = torch.randint(1, shape, dtype=torch_type[data_type], device='cuda')
else:
x = torch.randn(shape, dtype=torch_type[data_type], device='cuda')
if b_positive:
x = torch.abs(x)
return x
@pytest.mark.parametrize('expr, output_type, input0_type',
[('log', 'float32', 'float32'),
('log', 'float64', 'float64'),
('cos', 'float32', 'float32'),
('cos', 'float64', 'float64'),
('sin', 'float32', 'float32'),
('sin', 'float64', 'float64'),
('sqrt', 'float32', 'float32'),
('sqrt', 'float64', 'float64'),
('abs', 'float32', 'float32'),
('exp', 'float32', 'float32'),
('sigmoid', 'float32', 'float32'),
])
def test_single_input(expr, output_type, input0_type):
src = f"""
def kernel(X, Y, BLOCK: tl.constexpr):
x = tl.load(X + tl.arange(0, BLOCK))
y = tl.{expr}(x)
tl.store(Y + tl.arange(0, BLOCK), y)
"""
fp = tempfile.NamedTemporaryFile(mode='w', suffix=".py")
fp.write(src)
fp.flush()
def kernel(X, Y, BLOCK: tl.constexpr):
pass
kernel.__code__ = _testcapi.code_newempty(fp.name, "kernel", 1)
parameters = []
parameters.append(Parameter("X", 1))
parameters.append(Parameter("Y", 1))
parameters.append(Parameter("BLOCK", 1))
kernel.__signature__ = Signature(parameters=parameters)
kernel = triton.jit(kernel)
shape = (128, )
# limit the range of integers so that the sum does not overflow
x = get_tensor(shape, input0_type, expr == 'log' or expr == 'sqrt')
# triton result
y = torch.zeros(shape, dtype=torch_type[output_type], device="cuda")
kernel[(1,)](x, y, BLOCK=shape[0], extern_libs={"libdevice": libdevice})
# reference result
y_ref = getattr(torch, torch_ops[expr])(x)
# compare
assert_close(y, y_ref)
@pytest.mark.parametrize('expr, output_type, input0_type, input1_type',
[('umulhi', 'int32', 'int32', 'int32'),
('cdiv', 'int32', 'int32', 'int32'),
('fdiv', 'float32', 'float32', 'float32'),
('minimum', 'float32', 'float32', 'float32'),
('maximum', 'float32', 'float32', 'float32'),
])
def test_two_input(expr, output_type, input0_type, input1_type):
src = f"""
def kernel(X0, X1, Y, BLOCK: tl.constexpr):
x0 = tl.load(X0 + tl.arange(0, BLOCK))
x1 = tl.load(X1 + tl.arange(0, BLOCK))
y = tl.{expr}(x0, x1)
tl.store(Y + tl.arange(0, BLOCK), y)
"""
fp = tempfile.NamedTemporaryFile(mode='w', suffix=".py")
fp.write(src)
fp.flush()
def kernel(X0, X1, Y, BLOCK: tl.constexpr):
pass
kernel.__code__ = _testcapi.code_newempty(fp.name, "kernel", 1)
parameters = []
parameters.append(Parameter("X0", 1))
parameters.append(Parameter("X1", 1))
parameters.append(Parameter("Y", 1))
parameters.append(Parameter("BLOCK", 1))
kernel.__signature__ = Signature(parameters=parameters)
kernel = triton.jit(kernel)
shape = (128, )
# limit the range of integers so that the sum does not overflow
x0 = get_tensor(shape, input0_type)
x1 = get_tensor(shape, input1_type)
# triton result
y = torch.zeros(shape, dtype=torch_type[output_type], device="cuda")
kernel[(1,)](x0, x1, y, BLOCK=shape[0], extern_libs={"libdevice": libdevice})
# reference result
if expr == "cdiv":
y_ref = (x0 + x1 - 1) // x1
elif expr == "umulhi":
y_ref = ((x0.to(torch.int64) * x1) >> 32).to(torch.int32)
else:
y_ref = getattr(torch, torch_ops[expr])(x0, x1)
# compare
assert_close(y, y_ref)
@pytest.mark.parametrize('expr, output_type, input0_type, input1_type, input2_type',
[('where', "int32", "bool", "int32", "int32"), ])
def test_three_input(expr, output_type, input0_type, input1_type, input2_type):
src = f"""
def kernel(X0, X1, X2, Y, BLOCK: tl.constexpr):
x0 = tl.load(X0 + tl.arange(0, BLOCK))
x1 = tl.load(X1 + tl.arange(0, BLOCK))
x2 = tl.load(X2 + tl.arange(0, BLOCK))
y = tl.{expr}(x0, x1, x2)
tl.store(Y + tl.arange(0, BLOCK), y)
"""
fp = tempfile.NamedTemporaryFile(mode='w', suffix=".py")
fp.write(src)
fp.flush()
def kernel(X0, X1, X2, Y, BLOCK: tl.constexpr):
pass
kernel.__code__ = _testcapi.code_newempty(fp.name, "kernel", 1)
parameters = []
parameters.append(Parameter("X0", 1))
parameters.append(Parameter("X1", 1))
parameters.append(Parameter("X2", 1))
parameters.append(Parameter("Y", 1))
parameters.append(Parameter("BLOCK", 1))
kernel.__signature__ = Signature(parameters=parameters)
kernel = triton.jit(kernel)
shape = (128, )
# limit the range of integers so that the sum does not overflow
x0 = get_tensor(shape, input0_type)
x1 = get_tensor(shape, input1_type)
x2 = get_tensor(shape, input1_type)
# triton result
y = torch.zeros(shape, dtype=torch_type[output_type], device="cuda")
kernel[(1,)](x0, x1, x2, y, BLOCK=shape[0], extern_libs={"libdevice": libdevice})
# reference result
y_ref = getattr(torch, torch_ops[expr])(x0, x1, x2)
# compare
assert_close(y, y_ref)

View File

@@ -0,0 +1,178 @@
import pytest
import torch
from torch.testing import assert_close
import triton
import triton.language as tl
@pytest.mark.parametrize('num_warps, block_size, iter_size', [
[4, 256, 1],
[4, 1024, 256],
])
def test_sin_no_mask(num_warps, block_size, iter_size):
@triton.jit
def kernel(x_ptr,
y_ptr,
block_size,
iter_size: tl.constexpr):
pid = tl.program_id(axis=0)
for i in range(0, block_size, iter_size):
offset = pid * block_size + tl.arange(0, iter_size)
x_ptrs = x_ptr + offset
x = tl.load(x_ptrs)
y = tl.libdevice.sin(x)
y_ptrs = y_ptr + offset
tl.store(y_ptrs, y)
x_ptr += iter_size
y_ptr += iter_size
x = torch.randn((block_size,), device='cuda', dtype=torch.float32)
y = torch.empty((block_size,), device=x.device, dtype=x.dtype)
grid = lambda EA: (x.shape.numel() // (block_size),)
kernel[grid](x_ptr=x, y_ptr=y,
block_size=x.shape[0], iter_size=iter_size, num_warps=num_warps)
golden_y = torch.sin(x)
assert_close(y, golden_y, rtol=1e-7, atol=1e-7)
@pytest.mark.parametrize('num_warps, block_size, iter_size', [
[4, 256, 1],
[4, 1024, 256],
])
def test_fmin_no_mask(num_warps, block_size, iter_size):
@triton.jit
def kernel(x_ptr,
y_ptr,
z_ptr,
block_size,
iter_size: tl.constexpr):
pid = tl.program_id(axis=0)
for i in range(0, block_size, iter_size):
offset = pid * block_size + tl.arange(0, iter_size)
x_ptrs = x_ptr + offset
y_ptrs = y_ptr + offset
x = tl.load(x_ptrs)
y = tl.load(y_ptrs)
z = tl.libdevice.min(x, y)
z_ptrs = z_ptr + offset
tl.store(z_ptrs, z)
x_ptr += iter_size
y_ptr += iter_size
z_ptr += iter_size
x = torch.randn((block_size,), device='cuda', dtype=torch.float32)
y = torch.randn((block_size,), device='cuda', dtype=torch.float32)
z = torch.empty((block_size,), device=x.device, dtype=x.dtype)
grid = lambda EA: (x.shape.numel() // (block_size),)
kernel[grid](x_ptr=x, y_ptr=y, z_ptr=z,
block_size=x.shape[0], iter_size=iter_size, num_warps=num_warps)
golden_z = torch.minimum(x, y)
assert_close(z, golden_z, rtol=1e-7, atol=1e-7)
@pytest.mark.parametrize('num_warps, block_size, iter_size', [
[4, 256, 1],
[4, 1024, 256],
])
def test_fmad_rn_no_mask(num_warps, block_size, iter_size):
@triton.jit
def kernel(x_ptr,
y_ptr,
z_ptr,
w_ptr,
block_size,
iter_size: tl.constexpr):
pid = tl.program_id(axis=0)
for i in range(0, block_size, iter_size):
offset = pid * block_size + tl.arange(0, iter_size)
x_ptrs = x_ptr + offset
y_ptrs = y_ptr + offset
z_ptrs = z_ptr + offset
x = tl.load(x_ptrs)
y = tl.load(y_ptrs)
z = tl.load(z_ptrs)
w = tl.libdevice.fma_rn(x, y, z)
w_ptrs = w_ptr + offset
tl.store(w_ptrs, w)
x_ptr += iter_size
y_ptr += iter_size
z_ptr += iter_size
w_ptr += iter_size
x = torch.randn((block_size,), device='cuda', dtype=torch.float64)
y = torch.randn((block_size,), device='cuda', dtype=torch.float64)
z = torch.randn((block_size,), device='cuda', dtype=torch.float64)
w = torch.empty((block_size,), device=x.device, dtype=x.dtype)
grid = lambda EA: (x.shape.numel() // (block_size),)
kernel[grid](x_ptr=x, y_ptr=y, z_ptr=z, w_ptr=w,
block_size=x.shape[0], iter_size=iter_size, num_warps=num_warps)
golden_w = x * y + z
assert_close(w, golden_w, rtol=1e-7, atol=1e-7)
@pytest.mark.parametrize("dtype_str, expr, lib_path",
[('int32', 'libdevice.ffs', '/usr/local/cuda/nvvm/libdevice/libdevice.10.bc'),
('int32', 'libdevice.ffs', '')])
def test_libdevice(dtype_str, expr, lib_path):
src = f"""
def kernel(X, Y, BLOCK: tl.constexpr):
x = tl.load(X + tl.arange(0, BLOCK))
y = tl.{expr}(x)
tl.store(Y + tl.arange(0, BLOCK), y)
"""
import tempfile
from inspect import Parameter, Signature
import _testcapi
fp = tempfile.NamedTemporaryFile(mode='w', suffix=".py")
fp.write(src)
fp.flush()
def kernel(X, Y, BLOCK: tl.constexpr):
pass
kernel.__code__ = _testcapi.code_newempty(fp.name, "kernel", 1)
parameters = []
parameters.append(Parameter("X", 1))
parameters.append(Parameter("Y", 1))
parameters.append(Parameter("BLOCK", 1))
kernel.__signature__ = Signature(parameters=parameters)
kernel = triton.jit(kernel)
torch_type = {
"int32": torch.int32,
"float32": torch.float32,
"float64": torch.float64
}
shape = (128, )
# limit the range of integers so that the sum does not overflow
x = None
if dtype_str == "int32":
x = torch.randint(2**31 - 1, shape, dtype=torch_type[dtype_str], device="cuda")
else:
x = torch.randn(shape, dtype=torch_type[dtype_str], device="cuda")
if expr == 'libdevice.ffs':
y_ref = torch.zeros(shape, dtype=x.dtype, device="cuda")
for i in range(shape[0]):
y_ref[i] = (int(x[i]) & int(-x[i])).bit_length()
# triton result
y = torch.zeros(shape, dtype=x.dtype, device="cuda")
kernel[(1,)](x, y, BLOCK=shape[0], extern_libs={"libdevice": lib_path})
# compare
assert_close(y, y_ref)

View File

@@ -36,6 +36,7 @@ def str_to_ty(name):
"bf16": triton.language.bfloat16, "bf16": triton.language.bfloat16,
"fp32": triton.language.float32, "fp32": triton.language.float32,
"fp64": triton.language.float64, "fp64": triton.language.float64,
"i1": triton.language.int1,
"i8": triton.language.int8, "i8": triton.language.int8,
"i16": triton.language.int16, "i16": triton.language.int16,
"i32": triton.language.int32, "i32": triton.language.int32,
@@ -45,7 +46,6 @@ def str_to_ty(name):
"u32": triton.language.uint32, "u32": triton.language.uint32,
"u64": triton.language.uint64, "u64": triton.language.uint64,
"B": triton.language.int1, "B": triton.language.int1,
"i1": triton.language.int1,
} }
return tys[name] return tys[name]
@@ -888,6 +888,13 @@ def optimize_tritongpu_ir(mod, num_stages):
return mod return mod
def add_external_libs(mod, libs):
for name, path in libs.items():
if len(name) == 0 or len(path) == 0:
return
_triton.add_external_libs(mod, list(libs.keys()), list(libs.values()))
def make_llvm_ir(mod): def make_llvm_ir(mod):
return _triton.translate_triton_gpu_to_llvmir(mod) return _triton.translate_triton_gpu_to_llvmir(mod)
@@ -986,6 +993,8 @@ def _compile(fn, signature: str, device: int = -1, constants=dict(), specializat
module = optimize_tritongpu_ir(module, num_stages) module = optimize_tritongpu_ir(module, num_stages)
if output == "ttgir": if output == "ttgir":
return module.str() return module.str()
if extern_libs:
add_external_libs(module, extern_libs)
# llvm-ir # llvm-ir
llvm_ir = make_llvm_ir(module) llvm_ir = make_llvm_ir(module)

Binary file not shown.

View File

@@ -226,7 +226,6 @@ def fdiv(input: tl.tensor,
raise ValueError("both operands of fdiv must have floating poscalar type") raise ValueError("both operands of fdiv must have floating poscalar type")
input, other = binary_op_type_checking_impl(input, other, builder, False, False, False, True) input, other = binary_op_type_checking_impl(input, other, builder, False, False, False, True)
ret = builder.create_fdiv(input.handle, other.handle) ret = builder.create_fdiv(input.handle, other.handle)
ret.set_fdiv_ieee_rounding(ieee_rounding)
return tl.tensor(ret, input.type) return tl.tensor(ret, input.type)
@@ -1074,7 +1073,8 @@ def xor_sum(input: tl.tensor, axis: int, builder: ir.builder) -> tl.tensor:
def umulhi(x: tl.tensor, y: tl.tensor, builder: ir.builder) -> tl.tensor: def umulhi(x: tl.tensor, y: tl.tensor, builder: ir.builder) -> tl.tensor:
x, y = binary_op_type_checking_impl(x, y, builder) x, y = binary_op_type_checking_impl(x, y, builder)
return tl.tensor(builder.create_umulhi(x.handle, y.handle), x.type) from . import libdevice
return libdevice.mulhi(x, y, _builder=builder)
def exp(x: tl.tensor, builder: ir.builder) -> tl.tensor: def exp(x: tl.tensor, builder: ir.builder) -> tl.tensor: