Deprecation of Triton-C and Replacement by decorated Python functions (#86)
This PR implements a major overhaul of the frontend for Triton, and replaces Triton-C by a pure Python API in which kernels are defined as @triton.jit decorated functions. The documentation and tutorials have also been updated to accommodate these changes. See documentations for more information on the new API
This commit is contained in:
committed by
Philippe Tillet
parent
1fdb465b71
commit
39f4730305
@@ -4,8 +4,7 @@ Fused Softmax
|
||||
In this tutorial, you will write a fused softmax operation (that outperforms PyTorch) and learn about:
|
||||
|
||||
- The benefits of kernel fusion for bandwidth-bound operations.
|
||||
- The syntax and usage of reduction operators in Triton.
|
||||
- The automatic vectorization capabilities of the Triton compiler.
|
||||
- The reduction operators in Triton.
|
||||
"""
|
||||
|
||||
# %%
|
||||
@@ -36,79 +35,45 @@ def naive_softmax(x):
|
||||
# %%
|
||||
# When implemented naively in pytorch, computing :code:`y = naive_softmax(x)` for :math:`x \in R^{M \times N}` requires reading :math:`7MN` elements from DRAM and writing back :math:`3MN + 2M` elements.
|
||||
# This is obviously wasteful; we'd prefer to have a custom "fused" kernel that only reads X once and does all the necessary computations on-chip.
|
||||
# In this case, we would be reading and writing back only :math:`MN` bytes, so we could expect a theoretical speed-up of ~5x (i.e., :math:`(10MN + 2M) / 2MN`).
|
||||
# This solution would require reading and writing back only :math:`MN` bytes, so we could expect a theoretical speed-up of ~5x (i.e., :math:`(10MN + 2M) / 2MN`).
|
||||
# In practice, though, we would be getting a bit less as our kernel computes exponentials and internally moves data around in shared memory.
|
||||
|
||||
# %%
|
||||
# Compute Kernel
|
||||
# ----------------
|
||||
# Our softmax kernel works as follows: each program loads a row of the input X, normalizes it and writes back the result to the output Y.
|
||||
# Our softmax kernel works as follows: each program loads a row of the input matrix X, normalizes it and writes back the result to the output Y.
|
||||
# Note that one important limitation of Triton is that each block must have a power-of-two number of elements,
|
||||
# so we need to internally "pad" tiles and guard the memory operations properly if we want to handle any possible input shapes:
|
||||
#
|
||||
# .. code-block:: C
|
||||
#
|
||||
# __global__ void softmax(float* Y, float* X, int stride_xm, int stride_ym, int M, int N){
|
||||
# // row index
|
||||
# int m = get_program_id(0);
|
||||
# // column indices
|
||||
# int n [BLOCK] = 0 ... BLOCK;
|
||||
# // the memory address of all the elements
|
||||
# // that we want to load can be computed as follows
|
||||
# float* px [BLOCK] = X + m*stride_xm + n;
|
||||
# // because BLOCK has to be a power of two
|
||||
# // (per Triton-C specs), it is important
|
||||
# // to guard each memory operation with predicates
|
||||
# // or we will read out of bounds
|
||||
# bool check[BLOCK] = n < N;
|
||||
# float x [BLOCK] = check ? *px : -F32_INFINITY;
|
||||
# // syntax for reduction in Triton is:
|
||||
# // x[:, :, OPERATOR, :, :]
|
||||
# // ^
|
||||
# // index
|
||||
# // where operator is in {min, max, +}
|
||||
# // for 1D vectors, this is just x[OPERATOR].
|
||||
# float z [BLOCK] = x - x[max];
|
||||
# // Note that exponentials in Triton are fast
|
||||
# // but approximate (i.e., think __expf in CUDA)
|
||||
# float num [BLOCK] = exp(z);
|
||||
# float denom = num[+];
|
||||
# // The result of the reduction is now stored in y
|
||||
# float y [BLOCK] = num / denom;
|
||||
# // We write it back
|
||||
# float* py [BLOCK] = Y + m*stride_ym + n;
|
||||
# *?(check)py = y;
|
||||
# }
|
||||
|
||||
# %%
|
||||
# Torch Bindings
|
||||
# ---------------
|
||||
# Here our torch bindings is quite similar to that of the vector addition mentioned in the previous tutorial.
|
||||
# We just need to make sure that BLOCK is the smallest power of two greater than the number of columns N of the input matrix.
|
||||
# This means that different values of BLOCK will result in different kernels
|
||||
|
||||
import torch
|
||||
import triton
|
||||
|
||||
# Source code for the Triton kernel
|
||||
_src = """
|
||||
__global__ void softmax(float* Y, float* X, int stride_ym, int stride_xm, int M, int N){
|
||||
int m = get_program_id(0);
|
||||
int n [BLOCK] = 0 ... BLOCK;
|
||||
float* px [BLOCK] = X + m*stride_xm + n;
|
||||
bool check[BLOCK] = n < N;
|
||||
float x [BLOCK] = check ? *px : -F32_INFINITY;
|
||||
float z [BLOCK] = x - x[max];
|
||||
float num [BLOCK] = exp(z);
|
||||
float denom = num[+];
|
||||
float y [BLOCK] = num / denom;
|
||||
float* py [BLOCK] = Y + m*stride_ym + n;
|
||||
*?(check)py = y;
|
||||
}
|
||||
"""
|
||||
|
||||
@triton.jit
|
||||
def _softmax(Y, X, stride_xm, stride_ym, M, N, **meta):
|
||||
# row index
|
||||
m = triton.program_id(0)
|
||||
# col indices
|
||||
n = triton.arange(0, meta['BLOCK'])
|
||||
# the memory address of all the elements
|
||||
# that we want to load can be computed as follows
|
||||
X = X + m * stride_xm + n
|
||||
x = triton.load(X, mask=n < N, other=-float('inf'))
|
||||
# Substract maximum for numerical stability
|
||||
z = x - triton.max(x, axis=0)
|
||||
# Note that exponentials in Triton are fast
|
||||
# but approximate (i.e., think __expf in CUDA)
|
||||
num = triton.exp(z)
|
||||
denom = triton.sum(num, axis=0)
|
||||
y = num / denom
|
||||
# Write back to Y
|
||||
Y = Y + m * stride_ym + n
|
||||
triton.store(Y, y, mask=n < N)
|
||||
|
||||
|
||||
# %%
|
||||
# We can create a helper function that enqueues the kernel and its (meta-)arguments for any given input tensor.
|
||||
|
||||
|
||||
# helper function to get the smaller power-of-two larger than a given number
|
||||
def next_power_of_2(n):
|
||||
n -= 1
|
||||
n |= n >> 1
|
||||
@@ -120,11 +85,9 @@ def next_power_of_2(n):
|
||||
return n
|
||||
|
||||
|
||||
# kernel caching mechanism
|
||||
def make_kernel(N, device):
|
||||
cache = make_kernel.cache
|
||||
# Now are kernels are indexed not only by the provided device but also
|
||||
# by the rounded number of columns in the input matrix
|
||||
def softmax(x):
|
||||
M, N = x.shape
|
||||
# The block size is the smallest power of two greater than the number of columns in `x`
|
||||
BLOCK = next_power_of_2(N)
|
||||
# Another trick we can use is to ask the compiler to parallelize each
|
||||
# row-normalization more aggressively -- i.e., with more warps -- vectors
|
||||
@@ -134,37 +97,13 @@ def make_kernel(N, device):
|
||||
num_warps = 4
|
||||
if BLOCK >= 2048: num_warps = 8
|
||||
if BLOCK >= 4096: num_warps = 16
|
||||
# Each (BLOCK, num_warps, device) results in a different kernel
|
||||
key = (BLOCK, num_warps, device)
|
||||
if key not in cache:
|
||||
defines = {'BLOCK': BLOCK}
|
||||
cache[key] = triton.kernel(_src, device=device, defines=defines, num_warps=num_warps)
|
||||
return cache[key]
|
||||
# Allocate output
|
||||
y = torch.empty_like(x)
|
||||
# Enqueue kernel. The launch grid is simple: we have one kernel instance per row of the input matrix
|
||||
_softmax[(M, )](y, x, x.stride(0), y.stride(0), M, N, BLOCK=BLOCK)
|
||||
return y
|
||||
|
||||
|
||||
make_kernel.cache = dict()
|
||||
|
||||
|
||||
class _softmax(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, x):
|
||||
# constraints of the op
|
||||
assert x.dtype == torch.float32
|
||||
y = torch.empty_like(x)
|
||||
# The launch grid is simple: we have one kernel instance per row of the input matrix
|
||||
M, N = y.shape
|
||||
grid = lambda opt: (M, )
|
||||
# Launch kernel
|
||||
kernel = make_kernel(N, y.device)
|
||||
kernel(y.data_ptr(), x.data_ptr(), y.stride(0), x.stride(0), M, N, grid=grid)
|
||||
return y
|
||||
|
||||
|
||||
softmax = _softmax.apply
|
||||
|
||||
# %%
|
||||
# We can use the above softmax function to compute the row-wise softmax of a given matrix.
|
||||
|
||||
# %%
|
||||
# Unit Test
|
||||
# ----------
|
||||
|
Reference in New Issue
Block a user