[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-02-26 00:40:31 +00:00
parent ee0571dacd
commit 3a6c779d62
158 changed files with 262 additions and 262 deletions

View File

@@ -324,7 +324,7 @@ for different problem sizes.</p>
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 63.999998 63.999998
3 32768.0 63.999998 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 384.000001
@@ -334,12 +334,12 @@ for different problem sizes.</p>
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 842.004273 843.811163
13 33554432.0 842.004273 842.004273
14 67108864.0 847.448255 848.362445
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 49.916 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 47.018 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 190.511628
1 384.0 614.400016 585.142862 153.600004
0 256.0 512.000001 546.133347 186.181817
1 384.0 585.142862 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 814.058574 406.179533 198.733401
94 12288.0 814.111783 415.661740 198.995960
95 12416.0 812.498981 412.149375 198.556711
96 12544.0 812.566838 412.971190 198.815254
97 12672.0 812.633240 412.097543 198.873965
93 12160.0 814.058574 406.179533 198.834951
94 12288.0 814.111783 415.222812 199.197579
95 12416.0 812.498981 412.577363 198.755369
96 12544.0 812.566838 412.971190 198.913776
97 12672.0 812.633240 412.097543 199.069228
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 26.572 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.286 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -568,42 +568,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.978909 ... 3.276800 2.978909
0 256.0 2.730667 ... 3.276800 3.276800
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 51.150050 ... 53.773130 52.428801
6 1024.0 49.932191 ... 53.773130 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.888887
9 1408.0 64.138541 ... 67.305878 67.305878
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 62.929456 ... 62.492442 62.061463
12 1792.0 72.512412 ... 72.512412 71.588687
11 1664.0 62.929456 ... 62.929456 62.061463
12 1792.0 72.983276 ... 72.512412 72.047592
13 1920.0 68.776119 ... 70.172588 70.172588
14 2048.0 73.584279 ... 76.608294 76.260072
15 2176.0 83.155572 ... 85.998493 85.269692
16 2304.0 68.251065 ... 77.057651 76.563695
17 2432.0 71.305746 ... 85.653855 84.877538
18 2560.0 77.649287 ... 80.908642 80.908642
19 2688.0 83.186525 ... 89.676257 89.464755
20 2816.0 83.392363 ... 82.916747 82.602666
21 2944.0 82.373605 ... 82.373605 82.102191
22 3072.0 82.301023 ... 88.335577 88.335577
23 3200.0 83.879425 ... 95.096582 94.814812
24 3328.0 83.226931 ... 83.905938 84.101981
25 3456.0 80.140726 ... 84.068369 81.108217
26 3584.0 87.381330 ... 96.787292 98.375705
27 3712.0 80.757757 ... 88.326564 86.791782
28 3840.0 81.138664 ... 88.050954 91.398346
29 3968.0 87.035620 ... 90.994735 86.541797
30 4096.0 93.206754 ... 90.871857 87.211002
14 2048.0 73.584279 ... 76.959706 76.260072
15 2176.0 83.155572 ... 85.632545 85.269692
16 2304.0 68.446623 ... 76.809875 76.076024
17 2432.0 71.305746 ... 85.393507 84.877538
18 2560.0 78.019048 ... 81.108913 80.709358
19 2688.0 83.369354 ... 89.676257 89.464755
20 2816.0 83.552120 ... 83.074685 82.602666
21 2944.0 81.832567 ... 81.564701 81.431424
22 3072.0 82.062468 ... 88.335577 86.579673
23 3200.0 83.769634 ... 91.690542 92.352095
24 3328.0 79.111314 ... 84.596116 84.695641
25 3456.0 82.773682 ... 90.281712 90.994998
26 3584.0 84.033077 ... 91.563533 96.631267
27 3712.0 85.455380 ... 89.114488 87.514102
28 3840.0 84.874902 ... 91.511791 88.473602
29 3968.0 92.512459 ... 78.320884 84.504108
30 4096.0 88.243079 ... 85.324258 92.820009
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 48.800 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 24.923 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -371,7 +371,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.110 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.010 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 98.303995 307.200008
1 1536.0 351.085717 134.540150 344.523365
2 2048.0 423.724127 161.684218 334.367350
3 2560.0 465.454542 181.775141 330.322572
4 3072.0 515.580429 192.501302 320.556515
5 3584.0 554.941930 208.271186 310.527060
6 4096.0 571.534884 220.412561 298.796351
7 4608.0 498.162157 232.825259 287.251954
8 5120.0 527.381977 242.845844 285.104413
9 5632.0 540.671974 243.545956 290.060087
10 6144.0 544.118087 248.661056 286.879370
0 1024.0 311.088617 98.303995 303.407414
1 1536.0 351.085717 134.540150 341.333333
2 2048.0 423.724127 161.684218 325.509933
3 2560.0 465.454542 181.775141 326.808501
4 3072.0 515.580429 192.501302 317.793096
5 3584.0 551.384634 208.271186 310.527060
6 4096.0 571.534884 220.412561 295.207204
7 4608.0 500.416301 232.825259 291.031570
8 5120.0 527.381977 242.845844 287.775181
9 5632.0 542.843364 243.545956 289.438969
10 6144.0 546.133354 248.661056 286.322318
11 6656.0 532.479975 256.000009 285.767438
12 7168.0 507.469040 260.654538 286.242939
13 7680.0 479.999983 262.564106 278.850215
14 8192.0 463.698115 267.130429 284.939124
15 8704.0 416.958106 267.472468 284.987724
12 7168.0 507.469040 260.260201 286.242939
13 7680.0 479.999983 262.564106 279.272719
14 8192.0 462.607053 267.130429 284.526763
15 8704.0 416.958106 267.472468 284.599455
16 9216.0 429.483477 272.729961 288.751954
17 9728.0 437.213490 280.615388 290.027323
18 10240.0 449.287041 286.767793 290.153487
19 10752.0 428.651173 246.935876 290.922209
20 11264.0 429.786952 245.760001 286.980888
17 9728.0 437.213490 280.278512 290.027323
18 10240.0 449.287041 286.433562 290.153487
19 10752.0 429.364408 246.935876 290.922209
20 11264.0 429.104745 245.760001 286.676558
21 11776.0 423.724129 249.667843 288.981596
22 12288.0 420.102570 254.673582 294.323369
23 12800.0 414.574901 253.465340 288.180121
24 13312.0 412.242569 252.959629 289.916513
24 13312.0 411.711355 252.959629 289.916513
25 13824.0 405.098897 257.190689 292.056329
26 14336.0 395.021816 254.485198 286.719986
26 14336.0 395.021816 254.297107 286.719986
27 14848.0 385.662341 257.665934 289.246765
28 15360.0 373.874218 257.970599 287.775181
29 15872.0 369.832994 261.806182 289.899545
28 15360.0 373.874218 257.970599 286.211174
29 15872.0 369.832994 261.626369 289.899545
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 13.321 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.848 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>13:18.719</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:48.085</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:48.800</p></td>
<td><p>05:24.923</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:26.572</p></td>
<td><p>03:23.286</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:13.321</p></td>
<td><p>02:12.848</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:49.916</p></td>
<td><p>01:47.018</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.110</p></td>
<td><p>00:00.010</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>