[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2021-09-14 00:21:56 +00:00
parent 7e0c95d130
commit 3ca9a82732
22 changed files with 90 additions and 88 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 25 KiB

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 38 KiB

After

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 24 KiB

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 57 KiB

After

Width:  |  Height:  |  Size: 57 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

After

Width:  |  Height:  |  Size: 33 KiB

View File

@@ -44,6 +44,7 @@ You can then test your installation by running the unit tests:
.. code-block:: bash
pip install -r requirements-test.txt
pytest -vs .
and the benchmarks

View File

@@ -234,7 +234,7 @@ We can now run the decorated function above. Pass `print_data=True` to see the p
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 63.999998 76.800002
3 32768.0 63.999998 63.999998
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 384.000001
@@ -254,7 +254,7 @@ We can now run the decorated function above. Pass `print_data=True` to see the p
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 11.046 seconds)
**Total running time of the script:** ( 1 minutes 57.340 seconds)
.. _sphx_glr_download_getting-started_tutorials_01-vector-add.py:

View File

@@ -288,15 +288,15 @@ We will then compare its performance against (1) :code:`torch.softmax` and (2) t
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 186.181817
1 384.0 585.142862 585.142862 153.600004
2 512.0 630.153853 606.814814 154.566038
3 640.0 660.645170 640.000002 160.000000
2 512.0 630.153853 585.142849 156.038096
3 640.0 682.666684 640.000002 160.000000
4 768.0 702.171410 664.216187 163.839992
.. ... ... ... ...
93 12160.0 810.666687 406.179533 199.038365
93 12160.0 810.666687 405.333344 199.140227
94 12288.0 810.754644 415.661740 199.298541
95 12416.0 809.189387 412.149375 198.954424
96 12544.0 807.661970 412.546756 199.209928
97 12672.0 807.776923 412.097543 199.167004
95 12416.0 809.189387 411.722274 198.954424
96 12544.0 807.661970 412.971190 199.308841
97 12672.0 807.776923 412.097543 199.264875
[98 rows x 4 columns]
@@ -314,7 +314,7 @@ In the above plot, we can see that:
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 1 minutes 12.659 seconds)
**Total running time of the script:** ( 3 minutes 34.198 seconds)
.. _sphx_glr_download_getting-started_tutorials_02-fused-softmax.py:

View File

@@ -466,33 +466,33 @@ We can now compare the performance of our kernel against that of cuBLAS. Here we
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 39.025776 ... 39.025776 39.025776
4 768.0 32.768000 ... 35.389441 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 49.932191 ... 53.773130 52.428801
7 1152.0 44.566925 ... 46.656000 45.938215
8 1280.0 51.200001 ... 56.109587 56.109587
9 1408.0 64.138541 ... 66.485074 59.909625
10 1536.0 79.526831 ... 79.526831 78.643199
11 1664.0 63.372618 ... 62.492442 62.492442
12 1792.0 72.983276 ... 72.512412 72.512412
13 1920.0 65.828572 ... 70.530615 70.172588
14 2048.0 73.908442 ... 76.608294 76.608294
15 2176.0 81.472263 ... 84.909907 84.553145
16 2304.0 68.251065 ... 76.809875 76.809875
17 2432.0 71.305746 ... 73.738752 83.366361
18 2560.0 77.649287 ... 80.117359 80.313727
19 2688.0 83.922689 ... 84.861423 88.422041
20 2816.0 83.392363 ... 82.446516 81.369790
21 2944.0 79.737653 ... 81.564701 82.509987
22 3072.0 81.707223 ... 88.197981 88.890270
23 3200.0 83.989503 ... 88.765601 94.955488
24 3328.0 81.530349 ... 84.596116 84.496824
25 3456.0 81.518272 ... 91.200871 86.503829
26 3584.0 87.381330 ... 97.205829 89.290361
27 3712.0 85.822459 ... 84.730571 83.947349
28 3840.0 82.840447 ... 89.187096 91.473945
29 3968.0 92.442373 ... 91.540836 91.335278
30 4096.0 93.792965 ... 93.336389 93.142072
7 1152.0 44.566925 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.109587
9 1408.0 64.138541 ... 67.305878 65.684049
10 1536.0 80.430545 ... 78.643199 78.643199
11 1664.0 63.372618 ... 62.929456 62.061463
12 1792.0 72.983276 ... 72.512412 72.047592
13 1920.0 69.120002 ... 70.530615 70.530615
14 2048.0 73.908442 ... 76.959706 76.608294
15 2176.0 83.155572 ... 85.998493 84.909907
16 2304.0 68.446623 ... 77.307030 76.563695
17 2432.0 71.305746 ... 85.134737 84.621881
18 2560.0 77.649287 ... 81.108913 81.310171
19 2688.0 83.552988 ... 89.254248 89.464755
20 2816.0 82.290955 ... 83.552120 82.759409
21 2944.0 82.373605 ... 82.373605 82.784108
22 3072.0 81.943708 ... 88.197981 89.170242
23 3200.0 84.993363 ... 94.955488 91.428575
24 3328.0 80.079308 ... 84.895397 84.695641
25 3456.0 81.683457 ... 91.200871 90.790053
26 3584.0 87.551500 ... 89.646457 95.350361
27 3712.0 85.822459 ... 87.937800 86.942857
28 3840.0 82.592983 ... 86.063813 91.398346
29 3968.0 88.938731 ... 91.747320 83.980685
30 4096.0 93.858555 ... 92.372834 86.202781
[31 rows x 5 columns]
@@ -502,7 +502,7 @@ We can now compare the performance of our kernel against that of cuBLAS. Here we
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 2 minutes 14.528 seconds)
**Total running time of the script:** ( 6 minutes 38.014 seconds)
.. _sphx_glr_download_getting-started_tutorials_03-matrix-multiplication.py:

View File

@@ -238,7 +238,7 @@ References
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 0.186 seconds)
**Total running time of the script:** ( 0 minutes 0.262 seconds)
.. _sphx_glr_download_getting-started_tutorials_04-low-memory-dropout.py:

View File

@@ -5,14 +5,14 @@
Computation times
=================
**03:38.419** total execution time for **getting-started_tutorials** files:
**12:09.814** total execution time for **getting-started_tutorials** files:
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_03-matrix-multiplication.py` (``03-matrix-multiplication.py``) | 02:14.528 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_03-matrix-multiplication.py` (``03-matrix-multiplication.py``) | 06:38.014 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_02-fused-softmax.py` (``02-fused-softmax.py``) | 01:12.659 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_02-fused-softmax.py` (``02-fused-softmax.py``) | 03:34.198 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_01-vector-add.py` (``01-vector-add.py``) | 00:11.046 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_01-vector-add.py` (``01-vector-add.py``) | 01:57.340 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_04-low-memory-dropout.py` (``04-low-memory-dropout.py``) | 00:00.186 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_04-low-memory-dropout.py` (``04-low-memory-dropout.py``) | 00:00.262 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+

View File

@@ -208,7 +208,8 @@ pip install -e .
</div>
<p>Note that, if llvm-11 is not present on your system, the setup.py script will download the official LLVM11 static libraries link against that.</p>
<p>You can then test your installation by running the unit tests:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>pytest -vs .
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>pip install -r requirements-test.txt
pytest -vs .
</pre></div>
</div>
<p>and the benchmarks</p>

View File

@@ -323,7 +323,7 @@ for different problem sizes.</p>
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 63.999998 76.800002
3 32768.0 63.999998 63.999998
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 384.000001
@@ -338,7 +338,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 11.046 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 57.340 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -375,15 +375,15 @@ We will then compare its performance against (1) <code class="code docutils lite
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 186.181817
1 384.0 585.142862 585.142862 153.600004
2 512.0 630.153853 606.814814 154.566038
3 640.0 660.645170 640.000002 160.000000
2 512.0 630.153853 585.142849 156.038096
3 640.0 682.666684 640.000002 160.000000
4 768.0 702.171410 664.216187 163.839992
.. ... ... ... ...
93 12160.0 810.666687 406.179533 199.038365
93 12160.0 810.666687 405.333344 199.140227
94 12288.0 810.754644 415.661740 199.298541
95 12416.0 809.189387 412.149375 198.954424
96 12544.0 807.661970 412.546756 199.209928
97 12672.0 807.776923 412.097543 199.167004
95 12416.0 809.189387 411.722274 198.954424
96 12544.0 807.661970 412.971190 199.308841
97 12672.0 807.776923 412.097543 199.264875
[98 rows x 4 columns]
</pre></div>
@@ -396,7 +396,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 12.659 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 34.198 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -571,38 +571,38 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 39.025776 ... 39.025776 39.025776
4 768.0 32.768000 ... 35.389441 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 49.932191 ... 53.773130 52.428801
7 1152.0 44.566925 ... 46.656000 45.938215
8 1280.0 51.200001 ... 56.109587 56.109587
9 1408.0 64.138541 ... 66.485074 59.909625
10 1536.0 79.526831 ... 79.526831 78.643199
11 1664.0 63.372618 ... 62.492442 62.492442
12 1792.0 72.983276 ... 72.512412 72.512412
13 1920.0 65.828572 ... 70.530615 70.172588
14 2048.0 73.908442 ... 76.608294 76.608294
15 2176.0 81.472263 ... 84.909907 84.553145
16 2304.0 68.251065 ... 76.809875 76.809875
17 2432.0 71.305746 ... 73.738752 83.366361
18 2560.0 77.649287 ... 80.117359 80.313727
19 2688.0 83.922689 ... 84.861423 88.422041
20 2816.0 83.392363 ... 82.446516 81.369790
21 2944.0 79.737653 ... 81.564701 82.509987
22 3072.0 81.707223 ... 88.197981 88.890270
23 3200.0 83.989503 ... 88.765601 94.955488
24 3328.0 81.530349 ... 84.596116 84.496824
25 3456.0 81.518272 ... 91.200871 86.503829
26 3584.0 87.381330 ... 97.205829 89.290361
27 3712.0 85.822459 ... 84.730571 83.947349
28 3840.0 82.840447 ... 89.187096 91.473945
29 3968.0 92.442373 ... 91.540836 91.335278
30 4096.0 93.792965 ... 93.336389 93.142072
7 1152.0 44.566925 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.109587
9 1408.0 64.138541 ... 67.305878 65.684049
10 1536.0 80.430545 ... 78.643199 78.643199
11 1664.0 63.372618 ... 62.929456 62.061463
12 1792.0 72.983276 ... 72.512412 72.047592
13 1920.0 69.120002 ... 70.530615 70.530615
14 2048.0 73.908442 ... 76.959706 76.608294
15 2176.0 83.155572 ... 85.998493 84.909907
16 2304.0 68.446623 ... 77.307030 76.563695
17 2432.0 71.305746 ... 85.134737 84.621881
18 2560.0 77.649287 ... 81.108913 81.310171
19 2688.0 83.552988 ... 89.254248 89.464755
20 2816.0 82.290955 ... 83.552120 82.759409
21 2944.0 82.373605 ... 82.373605 82.784108
22 3072.0 81.943708 ... 88.197981 89.170242
23 3200.0 84.993363 ... 94.955488 91.428575
24 3328.0 80.079308 ... 84.895397 84.695641
25 3456.0 81.683457 ... 91.200871 90.790053
26 3584.0 87.551500 ... 89.646457 95.350361
27 3712.0 85.822459 ... 87.937800 86.942857
28 3840.0 82.592983 ... 86.063813 91.398346
29 3968.0 88.938731 ... 91.747320 83.980685
30 4096.0 93.858555 ... 92.372834 86.202781
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 14.528 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 6 minutes 38.014 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -370,7 +370,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.186 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.262 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>03:38.419</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:09.814</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,19 +183,19 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>02:14.528</p></td>
<td><p>06:38.014</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>01:12.659</p></td>
<td><p>03:34.198</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>00:11.046</p></td>
<td><p>01:57.340</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.186</p></td>
<td><p>00:00.262</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>

View File

@@ -185,7 +185,7 @@
<h1>triton.testing.do_bench<a class="headerlink" href="#triton-testing-do-bench" title="Permalink to this headline"></a></h1>
<dl class="py function">
<dt class="sig sig-object py" id="triton.testing.do_bench">
<span class="sig-prename descclassname"><span class="pre">triton.testing.</span></span><span class="sig-name descname"><span class="pre">do_bench</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">fn</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">warmup</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">25</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">rep</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">grad_to_none</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">percentiles</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[0.2,</span> <span class="pre">0.8]</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#triton.testing.do_bench" title="Permalink to this definition"></a></dt>
<span class="sig-prename descclassname"><span class="pre">triton.testing.</span></span><span class="sig-name descname"><span class="pre">do_bench</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">fn</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">warmup</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">25</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">rep</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">grad_to_none</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">percentiles</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[0.2,</span> <span class="pre">0.8]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">record_clocks</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#triton.testing.do_bench" title="Permalink to this definition"></a></dt>
<dd><p>Benchmark the runtime of the provided function. By default, return the median runtime of <code class="code docutils literal notranslate"><span class="pre">fn</span></code> along with
the 20-th and 80-th performance percentile.</p>
<dl class="field-list simple">

File diff suppressed because one or more lines are too long