[LANG] Fixed semantics of NaN in float comparisons (#281)
This commit is contained in:
@@ -69,7 +69,7 @@ def _test_unary(dtype_x, expr, torch_expr=None, device='cuda'):
|
||||
triton.testing.assert_almost_equal(z_ref, z_tri)
|
||||
|
||||
|
||||
def _test_binary(dtype_x, dtype_y, expr, device='cuda'):
|
||||
def _test_binary(dtype_x, dtype_y, expr, mode_x='real', mode_y='real', device='cuda'):
|
||||
SIZE = 128
|
||||
# define the kernel / launch-grid
|
||||
@triton.jit
|
||||
@@ -84,6 +84,8 @@ def _test_binary(dtype_x, dtype_y, expr, device='cuda'):
|
||||
# inputs
|
||||
x = triton.testing.random(SIZE, dtype=cvt[dtype_x], device=device)
|
||||
y = triton.testing.random(SIZE, dtype=cvt[dtype_y], device=device)
|
||||
if mode_x == 'nan': x[:] = float('nan')
|
||||
if mode_y == 'nan': y[:] = float('nan')
|
||||
# reference result
|
||||
z_ref = eval(expr)
|
||||
# triton result
|
||||
@@ -126,14 +128,25 @@ def test_bitwise_op(dtype_x, dtype_y, expr, device='cuda'):
|
||||
# ---------------
|
||||
# test compare ops
|
||||
# ---------------
|
||||
@pytest.mark.parametrize("dtype_x, dtype_y, expr", [
|
||||
(dtype_x, dtype_y, f' x {op} y') \
|
||||
for op in ['==', '!=', '>', '<', '>=', '<='] \
|
||||
ops = ['==', '!=', '>', '<', '>=', '<=']
|
||||
@pytest.mark.parametrize("dtype_x, dtype_y, expr, mode_x, mode_y", \
|
||||
# real
|
||||
[
|
||||
(dtype_x, dtype_y, f' x {op} y', 'real', 'real') \
|
||||
for op in ops \
|
||||
for dtype_x in dtypes \
|
||||
for dtype_y in dtypes
|
||||
] + \
|
||||
# NaNs
|
||||
[('float32', 'float32', f' x {op} y', mode_x, mode_y) \
|
||||
for op in ops
|
||||
for mode_x, mode_y in [('nan' , 'real'),
|
||||
('real', 'nan'),
|
||||
('nan' , 'nan')]
|
||||
|
||||
])
|
||||
def test_compare_op(dtype_x, dtype_y, expr, device='cuda'):
|
||||
_test_binary(dtype_x, dtype_y, expr, device=device)
|
||||
def test_compare_op(dtype_x, dtype_y, expr, mode_x, mode_y, device='cuda'):
|
||||
_test_binary(dtype_x, dtype_y, expr, mode_x=mode_x, mode_y=mode_y, device=device)
|
||||
|
||||
|
||||
# ---------------
|
@@ -1,6 +1,9 @@
|
||||
import torch
|
||||
import os
|
||||
from .code_gen import OutOfResources
|
||||
import subprocess
|
||||
import sys
|
||||
|
||||
|
||||
try:
|
||||
import triton._C.libtriton.cutlass as _cutlass
|
||||
@@ -99,7 +102,15 @@ def random(shape, dtype, device):
|
||||
raise RuntimeError(f'Unknown dtype {dtype}')
|
||||
|
||||
|
||||
def do_bench(fn, warmup=25, rep=100, grad_to_none=None, percentiles=[0.2, 0.8]):
|
||||
def nvsmi(attrs):
|
||||
attrs = ','.join(attrs)
|
||||
cmd = ['nvidia-smi', '-i', '0', '--query-gpu=' + attrs, '--format=csv,noheader,nounits']
|
||||
out = subprocess.check_output(cmd)
|
||||
ret = out.decode(sys.stdout.encoding).split(',')
|
||||
ret = [int(x) for x in ret]
|
||||
return ret
|
||||
|
||||
def do_bench(fn, warmup=25, rep=100, grad_to_none=None, percentiles=[0.2, 0.8], record_clocks=False):
|
||||
"""
|
||||
Benchmark the runtime of the provided function. By default, return the median runtime of :code:`fn` along with
|
||||
the 20-th and 80-th performance percentile.
|
||||
@@ -127,17 +138,21 @@ def do_bench(fn, warmup=25, rep=100, grad_to_none=None, percentiles=[0.2, 0.8]):
|
||||
end_event.record()
|
||||
torch.cuda.synchronize()
|
||||
estimate_ms = start_event.elapsed_time(end_event) / 5
|
||||
# compute number of warmup and repeat
|
||||
n_warmup = max(1, int(warmup/estimate_ms))
|
||||
n_repeat = max(1, int(rep/estimate_ms))
|
||||
# We maintain a buffer of 256 MB that we clear
|
||||
# before each kernel call to make sure that the L2
|
||||
# doesn't contain any input data before the run
|
||||
start_event = [torch.cuda.Event(enable_timing=True) for i in range(rep)]
|
||||
end_event = [torch.cuda.Event(enable_timing=True) for i in range(rep)]
|
||||
start_event = [torch.cuda.Event(enable_timing=True) for i in range(n_repeat)]
|
||||
end_event = [torch.cuda.Event(enable_timing=True) for i in range(n_repeat)]
|
||||
clocks = [None for i in range(n_repeat)]
|
||||
cache = torch.empty(int(256e6), dtype=torch.int8, device='cuda')
|
||||
# Warm-up
|
||||
for _ in range(int(warmup / estimate_ms)):
|
||||
for _ in range(n_warmup):
|
||||
fn()
|
||||
# Benchmark
|
||||
for i in range(rep):
|
||||
for i in range(n_repeat):
|
||||
# we don't want `fn` to accumulate gradient values
|
||||
# if it contains a backward pass. So we clear the
|
||||
# provided gradients
|
||||
@@ -150,11 +165,12 @@ def do_bench(fn, warmup=25, rep=100, grad_to_none=None, percentiles=[0.2, 0.8]):
|
||||
start_event[i].record()
|
||||
fn()
|
||||
end_event[i].record()
|
||||
# Record clocks
|
||||
torch.cuda.synchronize()
|
||||
times = torch.tensor([s.elapsed_time(e) for s, e in zip(start_event, end_event)])
|
||||
percentiles = torch.quantile(times, torch.tensor(percentiles)).tolist()
|
||||
med_ms = torch.median(times).item()
|
||||
if percentiles:
|
||||
percentiles = torch.quantile(times, torch.tensor(percentiles)).tolist()
|
||||
return tuple([med_ms] + percentiles)
|
||||
else:
|
||||
return med_ms
|
||||
|
Reference in New Issue
Block a user