[LANG] Fixed semantics of NaN in float comparisons (#281)

This commit is contained in:
Philippe Tillet
2021-09-13 15:06:29 -07:00
committed by GitHub
parent cecca90bea
commit 3e395bc84e
8 changed files with 46 additions and 17 deletions

View File

@@ -0,0 +1,96 @@
import torch
import triton
import pytest
import subprocess
import triton.language as tl
import numpy as np
def get_p2p_matrix():
try:
stdout = subprocess.check_output(["nvidia-smi", "topo", "-p2p", "n"]).decode("ascii")
except subprocess.CalledProcessError:
return pytest.skip("No multi-GPU topology", allow_module_level=True)
lines = stdout.split("Legend")[0].split('\n')[1:]
matrix = np.array([line.split('\t')[1:-1] for line in lines][:-2])
if matrix.size <= 1:
return pytest.skip("No multi-GPU topology", allow_module_level=True)
else:
return matrix
def get_p2p_devices():
matrix = get_p2p_matrix()
idx = np.where(matrix == "OK")
return f"cuda:{idx[0][0]}", f"cuda:{idx[1][0]}"
def get_non_p2p_devices():
matrix = get_p2p_matrix()
idx = np.where(matrix == "NS")
return f"cuda:{idx[0][0]}", f"cuda:{idx[1][0]}"
p2p_devices = get_p2p_devices()
non_p2p_devices = get_non_p2p_devices()
@triton.jit
def _copy(from_ptr, to_ptr, N, **meta):
pid = tl.program_id(0)
offsets = pid * meta['BLOCK'] + tl.arange(0, meta['BLOCK'])
values = tl.load(from_ptr + offsets, mask=offsets < N)
tl.store(to_ptr + offsets, values, mask=offsets < N)
@pytest.mark.skipif(not p2p_devices, reason="No pair of device with P2P support")
@pytest.mark.parametrize("device_kernel, device_from, device_to, stream_from, stream_to",
[(device_kernel, device_from, device_to, stream_from, stream_to)
for device_kernel in p2p_devices
for device_from in p2p_devices
for device_to in p2p_devices
for stream_from in ['default', 'custom']
for stream_to in ['default', 'custom']
])
def test_p2p(device_kernel, device_from, device_to, stream_from, stream_to):
if device_to == device_from:
return pytest.skip()
torch.cuda.set_device(device_kernel)
N = 512
grid = lambda meta: (triton.cdiv(N, meta['BLOCK']),)
with torch.cuda.stream(None if stream_from == 'default' else torch.cuda.Stream(device_from)):
x_from = torch.randn(N, dtype=torch.float32, device=device_from)
with torch.cuda.stream(None if stream_to == 'default' else torch.cuda.Stream(device_to)):
x_to = torch.empty(N, dtype=torch.float32, device=device_to)
_copy[grid](x_from, x_to, N, BLOCK=1024)
assert torch.allclose(x_from, x_to.to(device_from))
@pytest.mark.skipif(not non_p2p_devices, reason="No pair of device with no P2P support")
@pytest.mark.parametrize("device_kernel, device_from, device_to, stream_from, stream_to",
[(device_kernel, device_from, device_to, stream_from, stream_to)
for device_kernel in non_p2p_devices
for device_from in non_p2p_devices
for device_to in non_p2p_devices
for stream_from in ['default', 'custom']
for stream_to in ['default', 'custom']
])
def test_non_p2p(device_kernel, device_from, device_to, stream_from, stream_to):
if device_to == device_from:
return pytest.skip()
with pytest.raises(RuntimeError):
torch.cuda.set_device(device_kernel)
N = 512
grid = lambda meta: (triton.cdiv(N, meta['BLOCK']),)
with torch.cuda.stream(None if stream_from == 'default' else torch.cuda.Stream(device_from)):
x_from = torch.randn(N, dtype=torch.float32, device=device_from)
with torch.cuda.stream(None if stream_to == 'default' else torch.cuda.Stream(device_to)):
x_to = torch.empty(N, dtype=torch.float32, device=device_to)
_copy[grid](x_from, x_to, N, BLOCK=1024)