[LANG] Fixed semantics of NaN in float comparisons (#281)

This commit is contained in:
Philippe Tillet
2021-09-13 15:06:29 -07:00
committed by GitHub
parent cecca90bea
commit 3e395bc84e
8 changed files with 46 additions and 17 deletions

View File

@@ -275,7 +275,7 @@ ir::value *dispatch::greater_than(ir::value *input, ir::value *other, ir::builde
ir::type *scalar_ty = input->get_type()->get_scalar_ty(); ir::type *scalar_ty = input->get_type()->get_scalar_ty();
// float > float // float > float
if (scalar_ty->is_floating_point_ty()) if (scalar_ty->is_floating_point_ty())
return builder->create_fcmpUGT(input, other); return builder->create_fcmpOGT(input, other);
// int > int // int > int
else if (scalar_ty->is_integer_ty()) else if (scalar_ty->is_integer_ty())
return builder->create_icmpSGT(input, other); return builder->create_icmpSGT(input, other);
@@ -287,7 +287,7 @@ ir::value *dispatch::greater_equal(ir::value *input, ir::value *other, ir::build
ir::type *scalar_ty = input->get_type()->get_scalar_ty(); ir::type *scalar_ty = input->get_type()->get_scalar_ty();
// float >= float // float >= float
if (scalar_ty->is_floating_point_ty()) if (scalar_ty->is_floating_point_ty())
return builder->create_fcmpUGE(input, other); return builder->create_fcmpOGE(input, other);
// int >= int // int >= int
else if (scalar_ty->is_integer_ty()) else if (scalar_ty->is_integer_ty())
return builder->create_icmpSGE(input, other); return builder->create_icmpSGE(input, other);
@@ -299,7 +299,7 @@ ir::value *dispatch::less_than(ir::value *input, ir::value *other, ir::builder *
ir::type *scalar_ty = input->get_type()->get_scalar_ty(); ir::type *scalar_ty = input->get_type()->get_scalar_ty();
// float < float // float < float
if (scalar_ty->is_floating_point_ty()) if (scalar_ty->is_floating_point_ty())
return builder->create_fcmpULT(input, other); return builder->create_fcmpOLT(input, other);
// int < int // int < int
else if (scalar_ty->is_integer_ty()) else if (scalar_ty->is_integer_ty())
return builder->create_icmpSLT(input, other); return builder->create_icmpSLT(input, other);
@@ -311,7 +311,7 @@ ir::value *dispatch::less_equal(ir::value *input, ir::value *other, ir::builder
ir::type *scalar_ty = input->get_type()->get_scalar_ty(); ir::type *scalar_ty = input->get_type()->get_scalar_ty();
// float < float // float < float
if (scalar_ty->is_floating_point_ty()) if (scalar_ty->is_floating_point_ty())
return builder->create_fcmpULE(input, other); return builder->create_fcmpOLE(input, other);
// int < int // int < int
else if (scalar_ty->is_integer_ty()) else if (scalar_ty->is_integer_ty())
return builder->create_icmpSLE(input, other); return builder->create_icmpSLE(input, other);
@@ -323,7 +323,7 @@ ir::value *dispatch::equal(ir::value *input, ir::value *other, ir::builder *buil
ir::type *scalar_ty = input->get_type()->get_scalar_ty(); ir::type *scalar_ty = input->get_type()->get_scalar_ty();
// float == float // float == float
if (scalar_ty->is_floating_point_ty()) if (scalar_ty->is_floating_point_ty())
return builder->create_fcmpUEQ(input, other); return builder->create_fcmpOEQ(input, other);
// int == int // int == int
else if (scalar_ty->is_integer_ty()) else if (scalar_ty->is_integer_ty())
return builder->create_icmpEQ(input, other); return builder->create_icmpEQ(input, other);

View File

@@ -69,7 +69,7 @@ def _test_unary(dtype_x, expr, torch_expr=None, device='cuda'):
triton.testing.assert_almost_equal(z_ref, z_tri) triton.testing.assert_almost_equal(z_ref, z_tri)
def _test_binary(dtype_x, dtype_y, expr, device='cuda'): def _test_binary(dtype_x, dtype_y, expr, mode_x='real', mode_y='real', device='cuda'):
SIZE = 128 SIZE = 128
# define the kernel / launch-grid # define the kernel / launch-grid
@triton.jit @triton.jit
@@ -84,6 +84,8 @@ def _test_binary(dtype_x, dtype_y, expr, device='cuda'):
# inputs # inputs
x = triton.testing.random(SIZE, dtype=cvt[dtype_x], device=device) x = triton.testing.random(SIZE, dtype=cvt[dtype_x], device=device)
y = triton.testing.random(SIZE, dtype=cvt[dtype_y], device=device) y = triton.testing.random(SIZE, dtype=cvt[dtype_y], device=device)
if mode_x == 'nan': x[:] = float('nan')
if mode_y == 'nan': y[:] = float('nan')
# reference result # reference result
z_ref = eval(expr) z_ref = eval(expr)
# triton result # triton result
@@ -126,14 +128,25 @@ def test_bitwise_op(dtype_x, dtype_y, expr, device='cuda'):
# --------------- # ---------------
# test compare ops # test compare ops
# --------------- # ---------------
@pytest.mark.parametrize("dtype_x, dtype_y, expr", [ ops = ['==', '!=', '>', '<', '>=', '<=']
(dtype_x, dtype_y, f' x {op} y') \ @pytest.mark.parametrize("dtype_x, dtype_y, expr, mode_x, mode_y", \
for op in ['==', '!=', '>', '<', '>=', '<='] \ # real
[
(dtype_x, dtype_y, f' x {op} y', 'real', 'real') \
for op in ops \
for dtype_x in dtypes \ for dtype_x in dtypes \
for dtype_y in dtypes for dtype_y in dtypes
] + \
# NaNs
[('float32', 'float32', f' x {op} y', mode_x, mode_y) \
for op in ops
for mode_x, mode_y in [('nan' , 'real'),
('real', 'nan'),
('nan' , 'nan')]
]) ])
def test_compare_op(dtype_x, dtype_y, expr, device='cuda'): def test_compare_op(dtype_x, dtype_y, expr, mode_x, mode_y, device='cuda'):
_test_binary(dtype_x, dtype_y, expr, device=device) _test_binary(dtype_x, dtype_y, expr, mode_x=mode_x, mode_y=mode_y, device=device)
# --------------- # ---------------

View File

@@ -1,6 +1,9 @@
import torch import torch
import os import os
from .code_gen import OutOfResources from .code_gen import OutOfResources
import subprocess
import sys
try: try:
import triton._C.libtriton.cutlass as _cutlass import triton._C.libtriton.cutlass as _cutlass
@@ -99,7 +102,15 @@ def random(shape, dtype, device):
raise RuntimeError(f'Unknown dtype {dtype}') raise RuntimeError(f'Unknown dtype {dtype}')
def do_bench(fn, warmup=25, rep=100, grad_to_none=None, percentiles=[0.2, 0.8]): def nvsmi(attrs):
attrs = ','.join(attrs)
cmd = ['nvidia-smi', '-i', '0', '--query-gpu=' + attrs, '--format=csv,noheader,nounits']
out = subprocess.check_output(cmd)
ret = out.decode(sys.stdout.encoding).split(',')
ret = [int(x) for x in ret]
return ret
def do_bench(fn, warmup=25, rep=100, grad_to_none=None, percentiles=[0.2, 0.8], record_clocks=False):
""" """
Benchmark the runtime of the provided function. By default, return the median runtime of :code:`fn` along with Benchmark the runtime of the provided function. By default, return the median runtime of :code:`fn` along with
the 20-th and 80-th performance percentile. the 20-th and 80-th performance percentile.
@@ -127,17 +138,21 @@ def do_bench(fn, warmup=25, rep=100, grad_to_none=None, percentiles=[0.2, 0.8]):
end_event.record() end_event.record()
torch.cuda.synchronize() torch.cuda.synchronize()
estimate_ms = start_event.elapsed_time(end_event) / 5 estimate_ms = start_event.elapsed_time(end_event) / 5
# compute number of warmup and repeat
n_warmup = max(1, int(warmup/estimate_ms))
n_repeat = max(1, int(rep/estimate_ms))
# We maintain a buffer of 256 MB that we clear # We maintain a buffer of 256 MB that we clear
# before each kernel call to make sure that the L2 # before each kernel call to make sure that the L2
# doesn't contain any input data before the run # doesn't contain any input data before the run
start_event = [torch.cuda.Event(enable_timing=True) for i in range(rep)] start_event = [torch.cuda.Event(enable_timing=True) for i in range(n_repeat)]
end_event = [torch.cuda.Event(enable_timing=True) for i in range(rep)] end_event = [torch.cuda.Event(enable_timing=True) for i in range(n_repeat)]
clocks = [None for i in range(n_repeat)]
cache = torch.empty(int(256e6), dtype=torch.int8, device='cuda') cache = torch.empty(int(256e6), dtype=torch.int8, device='cuda')
# Warm-up # Warm-up
for _ in range(int(warmup / estimate_ms)): for _ in range(n_warmup):
fn() fn()
# Benchmark # Benchmark
for i in range(rep): for i in range(n_repeat):
# we don't want `fn` to accumulate gradient values # we don't want `fn` to accumulate gradient values
# if it contains a backward pass. So we clear the # if it contains a backward pass. So we clear the
# provided gradients # provided gradients
@@ -150,11 +165,12 @@ def do_bench(fn, warmup=25, rep=100, grad_to_none=None, percentiles=[0.2, 0.8]):
start_event[i].record() start_event[i].record()
fn() fn()
end_event[i].record() end_event[i].record()
# Record clocks
torch.cuda.synchronize() torch.cuda.synchronize()
times = torch.tensor([s.elapsed_time(e) for s, e in zip(start_event, end_event)]) times = torch.tensor([s.elapsed_time(e) for s, e in zip(start_event, end_event)])
percentiles = torch.quantile(times, torch.tensor(percentiles)).tolist()
med_ms = torch.median(times).item() med_ms = torch.median(times).item()
if percentiles: if percentiles:
percentiles = torch.quantile(times, torch.tensor(percentiles)).tolist()
return tuple([med_ms] + percentiles) return tuple([med_ms] + percentiles)
else: else:
return med_ms return med_ms