[FRONTEND] Made more tests pass (#805)
This commit is contained in:
@@ -281,141 +281,142 @@ def test_bin_op(dtype_x, dtype_y, op, device='cuda'):
|
||||
_test_binary(dtype_x, dtype_y, expr, numpy_expr, device=device)
|
||||
|
||||
|
||||
# @pytest.mark.parametrize("dtype_x, dtype_y",
|
||||
# [(dtype_x, dtype_y) for dtype_x in int_dtypes for dtype_y in int_dtypes] +
|
||||
# [(dtype_x, dtype_y) for dtype_x in uint_dtypes for dtype_y in uint_dtypes]
|
||||
# )
|
||||
# def test_floordiv(dtype_x, dtype_y, device='cuda'):
|
||||
# # Triton has IEEE, not numpy/torch, semantics for %, and those carry
|
||||
# # through to //, so we have to use a nonstandard expression to get a
|
||||
# # reference result for //.
|
||||
# expr = 'x // y'
|
||||
# numpy_expr = '((x - np.fmod(x, y)) / y)'
|
||||
# _test_binary(dtype_x, dtype_y, expr, numpy_expr, device=device)
|
||||
@pytest.mark.parametrize("dtype_x, dtype_y",
|
||||
[(dtype_x, dtype_y) for dtype_x in int_dtypes for dtype_y in int_dtypes] +
|
||||
[(dtype_x, dtype_y) for dtype_x in uint_dtypes for dtype_y in uint_dtypes]
|
||||
)
|
||||
def test_floordiv(dtype_x, dtype_y, device='cuda'):
|
||||
# Triton has IEEE, not numpy/torch, semantics for %, and those carry
|
||||
# through to //, so we have to use a nonstandard expression to get a
|
||||
# reference result for //.
|
||||
expr = 'x // y'
|
||||
numpy_expr = '((x - np.fmod(x, y)) / y)'
|
||||
_test_binary(dtype_x, dtype_y, expr, numpy_expr, device=device)
|
||||
|
||||
|
||||
# # ---------------
|
||||
# # test bitwise ops
|
||||
# # ---------------
|
||||
# @pytest.mark.parametrize("dtype_x, dtype_y, op", [
|
||||
# (dtype_x, dtype_y, op)
|
||||
# for op in ['&', '|', '^']
|
||||
# for dtype_x in dtypes + dtypes_with_bfloat16
|
||||
# for dtype_y in dtypes + dtypes_with_bfloat16
|
||||
# ])
|
||||
# def test_bitwise_op(dtype_x, dtype_y, op, device='cuda'):
|
||||
# expr = f'x {op} y'
|
||||
# if (dtype_x in uint_dtypes and dtype_y in int_dtypes and _bitwidth(dtype_x) >= _bitwidth(dtype_y)):
|
||||
# numpy_expr = f'x.astype(np.{dtype_x}) {op} y.astype(np.{dtype_x})'
|
||||
# elif (dtype_y in uint_dtypes and dtype_x in int_dtypes and _bitwidth(dtype_y) >= _bitwidth(dtype_x)):
|
||||
# numpy_expr = f'x.astype(np.{dtype_y}) {op} y.astype(np.{dtype_y})'
|
||||
# else:
|
||||
# numpy_expr = None
|
||||
# if 'float' in dtype_x + dtype_y:
|
||||
# with pytest.raises(triton.CompilationError) as exc_info:
|
||||
# _test_binary(dtype_x, dtype_y, expr, numpy_expr='np.array([])', device=device)
|
||||
# # The CompilationError must have been caused by a C++ exception with this text.
|
||||
# assert re.match('invalid operands of type', str(exc_info.value.__cause__))
|
||||
# else:
|
||||
# _test_binary(dtype_x, dtype_y, expr, numpy_expr, device=device)
|
||||
# ---------------
|
||||
# test bitwise ops
|
||||
# ---------------
|
||||
@pytest.mark.parametrize("dtype_x, dtype_y, op", [
|
||||
(dtype_x, dtype_y, op)
|
||||
for op in ['&', '|', '^']
|
||||
for dtype_x in dtypes + dtypes_with_bfloat16
|
||||
for dtype_y in dtypes + dtypes_with_bfloat16
|
||||
])
|
||||
def test_bitwise_op(dtype_x, dtype_y, op, device='cuda'):
|
||||
expr = f'x {op} y'
|
||||
if (dtype_x in uint_dtypes and dtype_y in int_dtypes and _bitwidth(dtype_x) >= _bitwidth(dtype_y)):
|
||||
numpy_expr = f'x.astype(np.{dtype_x}) {op} y.astype(np.{dtype_x})'
|
||||
elif (dtype_y in uint_dtypes and dtype_x in int_dtypes and _bitwidth(dtype_y) >= _bitwidth(dtype_x)):
|
||||
numpy_expr = f'x.astype(np.{dtype_y}) {op} y.astype(np.{dtype_y})'
|
||||
else:
|
||||
numpy_expr = None
|
||||
if 'float' in dtype_x + dtype_y:
|
||||
with pytest.raises(triton.CompilationError) as exc_info:
|
||||
_test_binary(dtype_x, dtype_y, expr, numpy_expr='np.array([])', device=device)
|
||||
# The CompilationError must have been caused by a C++ exception with this text.
|
||||
assert re.match('invalid operands of type', str(exc_info.value.__cause__))
|
||||
else:
|
||||
_test_binary(dtype_x, dtype_y, expr, numpy_expr, device=device)
|
||||
|
||||
|
||||
# @pytest.mark.parametrize("dtype_x, dtype_y, op", [
|
||||
# (dtype_x, dtype_y, op)
|
||||
# for op in ['<<', '>>']
|
||||
# for dtype_x in int_dtypes + uint_dtypes
|
||||
# for dtype_y in int_dtypes + uint_dtypes
|
||||
# ])
|
||||
# def test_shift_op(dtype_x, dtype_y, op, device='cuda'):
|
||||
# expr = f'x {op} y'
|
||||
# bw = max(_bitwidth(dtype_x), _bitwidth(dtype_y))
|
||||
# dtype_z = f'uint{bw}'
|
||||
# numpy_expr = f'x.astype(np.{dtype_z}) {op} y.astype(np.{dtype_z})'
|
||||
# _test_binary(dtype_x, dtype_y, expr, numpy_expr, device=device, y_low=0, y_high=65)
|
||||
@pytest.mark.parametrize("dtype_x, dtype_y, op", [
|
||||
(dtype_x, dtype_y, op)
|
||||
for op in ['<<', '>>']
|
||||
for dtype_x in int_dtypes + uint_dtypes
|
||||
for dtype_y in int_dtypes + uint_dtypes
|
||||
])
|
||||
def test_shift_op(dtype_x, dtype_y, op, device='cuda'):
|
||||
expr = f'x {op} y'
|
||||
bw = max(_bitwidth(dtype_x), _bitwidth(dtype_y))
|
||||
dtype_z = f'uint{bw}'
|
||||
numpy_expr = f'x.astype(np.{dtype_z}) {op} y.astype(np.{dtype_z})'
|
||||
_test_binary(dtype_x, dtype_y, expr, numpy_expr, device=device, y_low=0, y_high=65)
|
||||
|
||||
|
||||
# # ---------------
|
||||
# # test compare ops
|
||||
# # ---------------
|
||||
# ops = ['==', '!=', '>', '<', '>=', '<=']
|
||||
# ---------------
|
||||
# test compare ops
|
||||
# ---------------
|
||||
ops = ['==', '!=', '>', '<', '>=', '<=']
|
||||
|
||||
|
||||
# @pytest.mark.parametrize("dtype_x, dtype_y, op, mode_x, mode_y",
|
||||
# # real
|
||||
# [
|
||||
# (dtype_x, dtype_y, op, 'real', 'real')
|
||||
# for op in ops
|
||||
# for dtype_x in dtypes
|
||||
# for dtype_y in dtypes
|
||||
# ] +
|
||||
# # NaNs
|
||||
# [('float32', 'float32', op, mode_x, mode_y)
|
||||
# for op in ops
|
||||
# for mode_x, mode_y in [('nan', 'real'),
|
||||
# ('real', 'nan'),
|
||||
# ('nan', 'nan')]
|
||||
@pytest.mark.parametrize("dtype_x, dtype_y, op, mode_x, mode_y",
|
||||
# real
|
||||
[
|
||||
(dtype_x, dtype_y, op, 'real', 'real')
|
||||
for op in ops
|
||||
for dtype_x in dtypes
|
||||
for dtype_y in dtypes
|
||||
] +
|
||||
# NaNs
|
||||
[('float32', 'float32', op, mode_x, mode_y)
|
||||
for op in ops
|
||||
for mode_x, mode_y in [('nan', 'real'),
|
||||
('real', 'nan'),
|
||||
('nan', 'nan')]
|
||||
|
||||
# ])
|
||||
# def test_compare_op(dtype_x, dtype_y, op, mode_x, mode_y, device='cuda'):
|
||||
# expr = f'x {op} y'
|
||||
# if (dtype_x in uint_dtypes and dtype_y in int_dtypes and _bitwidth(dtype_x) >= _bitwidth(dtype_y)):
|
||||
# numpy_expr = f'x.astype(np.{dtype_x}) {op} y.astype(np.{dtype_x})'
|
||||
# elif (dtype_y in uint_dtypes and dtype_x in int_dtypes and _bitwidth(dtype_y) >= _bitwidth(dtype_x)):
|
||||
# numpy_expr = f'x.astype(np.{dtype_y}) {op} y.astype(np.{dtype_y})'
|
||||
# else:
|
||||
# numpy_expr = None
|
||||
# _test_binary(dtype_x, dtype_y, expr, numpy_expr, mode_x=mode_x, mode_y=mode_y, device=device)
|
||||
])
|
||||
def test_compare_op(dtype_x, dtype_y, op, mode_x, mode_y, device='cuda'):
|
||||
expr = f'x {op} y'
|
||||
if (dtype_x in uint_dtypes and dtype_y in int_dtypes and _bitwidth(dtype_x) >= _bitwidth(dtype_y)):
|
||||
numpy_expr = f'x.astype(np.{dtype_x}) {op} y.astype(np.{dtype_x})'
|
||||
elif (dtype_y in uint_dtypes and dtype_x in int_dtypes and _bitwidth(dtype_y) >= _bitwidth(dtype_x)):
|
||||
numpy_expr = f'x.astype(np.{dtype_y}) {op} y.astype(np.{dtype_y})'
|
||||
else:
|
||||
numpy_expr = None
|
||||
_test_binary(dtype_x, dtype_y, expr, numpy_expr, mode_x=mode_x, mode_y=mode_y, device=device)
|
||||
|
||||
|
||||
# # ---------------
|
||||
# # test where
|
||||
# # ---------------
|
||||
# @pytest.mark.parametrize("dtype", dtypes_with_bfloat16 + ["*int32"])
|
||||
# def test_where(dtype):
|
||||
# select_ptrs = False
|
||||
# if dtype == "*int32":
|
||||
# dtype = "int64"
|
||||
# select_ptrs = True
|
||||
# check_type_supported(dtype)
|
||||
# ---------------
|
||||
# test where
|
||||
# ---------------
|
||||
@pytest.mark.parametrize("dtype", dtypes_with_bfloat16 + ["*int32"])
|
||||
def test_where(dtype):
|
||||
select_ptrs = False
|
||||
if dtype == "*int32":
|
||||
dtype = "int64"
|
||||
select_ptrs = True
|
||||
check_type_supported(dtype)
|
||||
|
||||
# @triton.jit
|
||||
# def where_kernel(cond_ptr, a_ptr, b_ptr, output_ptr, n_elements,
|
||||
# BLOCK_SIZE: tl.constexpr,
|
||||
# TEST_POINTERS: tl.constexpr):
|
||||
# offsets = tl.program_id(axis=0) * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
|
||||
# mask = offsets < n_elements
|
||||
# decide = tl.load(cond_ptr + offsets, mask=mask)
|
||||
# if TEST_POINTERS:
|
||||
# a = tl.load(a_ptr + offsets, mask=mask).to(tl.pi32_t)
|
||||
# b = tl.load(b_ptr + offsets, mask=mask).to(tl.pi32_t)
|
||||
# else:
|
||||
# a = tl.load(a_ptr + offsets, mask=mask)
|
||||
# b = tl.load(b_ptr + offsets, mask=mask)
|
||||
# output = tl.where(decide, a, b)
|
||||
# tl.store(output_ptr + offsets, output, mask=mask)
|
||||
@triton.jit
|
||||
def where_kernel(cond_ptr, a_ptr, b_ptr, output_ptr, n_elements,
|
||||
BLOCK_SIZE: tl.constexpr,
|
||||
TEST_POINTERS: tl.constexpr):
|
||||
offsets = tl.program_id(axis=0) * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
|
||||
mask = offsets < n_elements
|
||||
decide = tl.load(cond_ptr + offsets, mask=mask)
|
||||
if TEST_POINTERS:
|
||||
a = tl.load(a_ptr + offsets, mask=mask).to(tl.pi32_t)
|
||||
b = tl.load(b_ptr + offsets, mask=mask).to(tl.pi32_t)
|
||||
else:
|
||||
a = tl.load(a_ptr + offsets, mask=mask)
|
||||
b = tl.load(b_ptr + offsets, mask=mask)
|
||||
output = tl.where(decide, a, b)
|
||||
tl.store(output_ptr + offsets, output, mask=mask)
|
||||
|
||||
# SIZE = 1_000
|
||||
# rs = RandomState(17)
|
||||
# cond = numpy_random(SIZE, 'bool', rs)
|
||||
# x = numpy_random(SIZE, dtype_str=dtype, rs=rs)
|
||||
# y = numpy_random(SIZE, dtype_str=dtype, rs=rs)
|
||||
# z = np.where(cond, x, y)
|
||||
SIZE = 1_000
|
||||
rs = RandomState(17)
|
||||
cond = numpy_random(SIZE, 'bool', rs)
|
||||
x = numpy_random(SIZE, dtype_str=dtype, rs=rs)
|
||||
y = numpy_random(SIZE, dtype_str=dtype, rs=rs)
|
||||
z = np.where(cond, x, y)
|
||||
|
||||
# cond_tri = to_triton(cond, device='cuda')
|
||||
# x_tri = to_triton(x, device='cuda', dst_type=dtype)
|
||||
# y_tri = to_triton(y, device='cuda', dst_type=dtype)
|
||||
# z_tri = to_triton(np.empty(SIZE, dtype=z.dtype), device='cuda', dst_type=dtype)
|
||||
cond_tri = to_triton(cond, device='cuda')
|
||||
x_tri = to_triton(x, device='cuda', dst_type=dtype)
|
||||
y_tri = to_triton(y, device='cuda', dst_type=dtype)
|
||||
z_tri = to_triton(np.empty(SIZE, dtype=z.dtype), device='cuda', dst_type=dtype)
|
||||
|
||||
# grid = lambda meta: (triton.cdiv(SIZE, meta['BLOCK_SIZE']),)
|
||||
# where_kernel[grid](cond_tri, x_tri, y_tri, z_tri, SIZE, BLOCK_SIZE=1024, TEST_POINTERS=select_ptrs)
|
||||
# assert (z == to_numpy(z_tri)).all()
|
||||
grid = lambda meta: (triton.cdiv(SIZE, meta['BLOCK_SIZE']),)
|
||||
where_kernel[grid](cond_tri, x_tri, y_tri, z_tri, SIZE, BLOCK_SIZE=1024, TEST_POINTERS=select_ptrs)
|
||||
assert (z == to_numpy(z_tri)).all()
|
||||
|
||||
|
||||
# TODO: wrong result
|
||||
# def test_where_broadcast():
|
||||
# @triton.jit
|
||||
# def where_kernel(cond_ptr, a_ptr, out_ptr, BLOCK_SIZE: tl.constexpr):
|
||||
# xoffsets = tl.reshape(tl.arange(0, BLOCK_SIZE), [BLOCK_SIZE, 1])
|
||||
# yoffsets = tl.reshape(tl.arange(0, BLOCK_SIZE), [1, BLOCK_SIZE])
|
||||
# xoffsets = tl.arange(0, BLOCK_SIZE)[:, None]
|
||||
# yoffsets = tl.arange(0, BLOCK_SIZE)[None, :]
|
||||
|
||||
# mask = tl.load(cond_ptr + yoffsets)
|
||||
# vals = tl.load(a_ptr + yoffsets + BLOCK_SIZE * xoffsets)
|
||||
@@ -424,8 +425,8 @@ def test_bin_op(dtype_x, dtype_y, op, device='cuda'):
|
||||
|
||||
# @triton.jit
|
||||
# def where_scalar_condition(a_ptr, out_ptr, BLOCK_SIZE: tl.constexpr):
|
||||
# xoffsets = tl.reshape(tl.arange(0, BLOCK_SIZE), [BLOCK_SIZE, 1])
|
||||
# yoffsets = tl.reshape(tl.arange(0, BLOCK_SIZE), [1, BLOCK_SIZE])
|
||||
# xoffsets = tl.arange(0, BLOCK_SIZE)[:, None]
|
||||
# yoffsets = tl.arange(0, BLOCK_SIZE)[None, :]
|
||||
# mask = 0
|
||||
# vals = tl.load(a_ptr + yoffsets + BLOCK_SIZE * xoffsets)
|
||||
# res = tl.where(mask, vals, 0.)
|
||||
@@ -451,17 +452,19 @@ def test_bin_op(dtype_x, dtype_y, op, device='cuda'):
|
||||
# # ---------------
|
||||
|
||||
|
||||
# @pytest.mark.parametrize("dtype_x, expr", [
|
||||
# (dtype_x, ' -x') for dtype_x in dtypes_with_bfloat16
|
||||
# ] + [
|
||||
# (dtype_x, ' ~x') for dtype_x in int_dtypes
|
||||
# ])
|
||||
# def test_unary_op(dtype_x, expr, device='cuda'):
|
||||
# _test_unary(dtype_x, expr, device=device)
|
||||
@pytest.mark.parametrize("dtype_x, expr", [
|
||||
(dtype_x, ' -x') for dtype_x in dtypes_with_bfloat16
|
||||
] + [
|
||||
(dtype_x, ' ~x') for dtype_x in int_dtypes
|
||||
])
|
||||
def test_unary_op(dtype_x, expr, device='cuda'):
|
||||
_test_unary(dtype_x, expr, device=device)
|
||||
|
||||
# # ----------------
|
||||
# # test math ops
|
||||
# # ----------------
|
||||
|
||||
# TODO: Math module
|
||||
# # @pytest.mark.parametrize("expr", [
|
||||
# # 'exp', 'log', 'cos', 'sin'
|
||||
# # ])
|
||||
@@ -479,17 +482,18 @@ def test_bin_op(dtype_x, dtype_y, op, device='cuda'):
|
||||
# # ----------------
|
||||
|
||||
|
||||
# def make_ptr_str(name, shape):
|
||||
# rank = len(shape)
|
||||
# offsets = []
|
||||
# stride = 1
|
||||
# for i in reversed(range(rank)):
|
||||
# idx = ', '.join([':' if ii == i else 'None' for ii in range(rank)])
|
||||
# offsets += [f'tl.arange(0, {shape[i]})[{idx}]*{stride}']
|
||||
# stride *= shape[i]
|
||||
# return f"{name} + {' + '.join(offsets)}"
|
||||
def make_ptr_str(name, shape):
|
||||
rank = len(shape)
|
||||
offsets = []
|
||||
stride = 1
|
||||
for i in reversed(range(rank)):
|
||||
idx = ', '.join([':' if ii == i else 'None' for ii in range(rank)])
|
||||
offsets += [f'tl.arange(0, {shape[i]})[{idx}]*{stride}']
|
||||
stride *= shape[i]
|
||||
return f"{name} + {' + '.join(offsets)}"
|
||||
|
||||
|
||||
# TODO: handle `%4 = triton_gpu.convert_layout %3 : (tensor<32xi32, #blocked0>) -> tensor<32xi32, #triton_gpu.slice<{dim = 0, parent = #blocked1}>>``
|
||||
# @pytest.mark.parametrize("expr, dtype_str", [
|
||||
# (f'x[{s}]', d)
|
||||
# for s in ['None, :', ':, None', 'None, :, :', ':, :, None']
|
||||
|
Reference in New Issue
Block a user