[FRONTEND] Made more tests pass (#805)
This commit is contained in:
@@ -56,6 +56,22 @@ def TT_PtrToIntOp : TT_Op<"ptr_to_int", [SameOperandsAndResultShape,
|
||||
let assemblyFormat = "$from attr-dict `:` type($from) `->` type($result)";
|
||||
}
|
||||
|
||||
// arith.bitcast doesn't support pointers
|
||||
def TT_BitcastOp : TT_Op<"bitcast", [SameOperandsAndResultShape,
|
||||
SameOperandsAndResultEncoding,
|
||||
NoSideEffect,
|
||||
/*DeclareOpInterfaceMethods<CastOpInterface>*/]> {
|
||||
let summary = "Cast between types of the same bitwidth";
|
||||
|
||||
let arguments = (ins TT_Type:$from);
|
||||
|
||||
let results = (outs TT_Type:$result);
|
||||
|
||||
let assemblyFormat = "$from attr-dict `:` type($from) `->` type($result)";
|
||||
|
||||
// TODO: Add verifier
|
||||
}
|
||||
|
||||
def TT_FpToFp : TT_Op<"fp_to_fp", [SameOperandsAndResultShape,
|
||||
SameOperandsAndResultEncoding,
|
||||
NoSideEffect,
|
||||
|
@@ -1400,6 +1400,8 @@ struct ExtractSliceOpConversion
|
||||
}
|
||||
};
|
||||
|
||||
// TODO: rewrite Ternary/Binary/Unary as Elementwise
|
||||
|
||||
// A CRTP style of base class.
|
||||
template <typename SourceOp, typename DestOp, typename ConcreteT>
|
||||
class BinaryOpConversionBase
|
||||
@@ -1470,6 +1472,77 @@ struct BinaryOpConversion
|
||||
Value getRhs(OpAdaptor adaptor) const { return adaptor.getRhs(); }
|
||||
};
|
||||
|
||||
//
|
||||
// Ternary
|
||||
//
|
||||
|
||||
template <typename SourceOp, typename DestOp, typename ConcreteT>
|
||||
class TernaryOpConversionBase
|
||||
: public ConvertTritonGPUOpToLLVMPattern<SourceOp> {
|
||||
public:
|
||||
using OpAdaptor = typename SourceOp::Adaptor;
|
||||
|
||||
explicit TernaryOpConversionBase(LLVMTypeConverter &typeConverter,
|
||||
PatternBenefit benefit = 1)
|
||||
: ConvertTritonGPUOpToLLVMPattern<SourceOp>(typeConverter, benefit) {}
|
||||
|
||||
LogicalResult
|
||||
matchAndRewrite(SourceOp op, OpAdaptor adaptor,
|
||||
ConversionPatternRewriter &rewriter) const override {
|
||||
auto resultTy = op.getType().template dyn_cast<RankedTensorType>();
|
||||
// ArithmeticToLLVM will handle the lowering of scalar ArithOps
|
||||
if (!resultTy)
|
||||
return failure();
|
||||
|
||||
Location loc = op->getLoc();
|
||||
auto resultLayout =
|
||||
resultTy.getEncoding().template dyn_cast<BlockedEncodingAttr>();
|
||||
auto resultShape = resultTy.getShape();
|
||||
assert(resultLayout && "Unexpected resultLayout in TernaryOpConversion");
|
||||
unsigned elems = resultLayout.getElemsPerThread(resultShape);
|
||||
Type elemTy =
|
||||
this->getTypeConverter()->convertType(resultTy.getElementType());
|
||||
SmallVector<Type> types(elems, elemTy);
|
||||
Type structTy = LLVM::LLVMStructType::getLiteral(this->getContext(), types);
|
||||
|
||||
auto *concreteThis = static_cast<const ConcreteT *>(this);
|
||||
auto lhss =
|
||||
this->getElementsFromStruct(loc, adaptor.getOperands()[0], rewriter);
|
||||
auto rhss =
|
||||
this->getElementsFromStruct(loc, adaptor.getOperands()[1], rewriter);
|
||||
auto thss =
|
||||
this->getElementsFromStruct(loc, adaptor.getOperands()[2], rewriter);
|
||||
SmallVector<Value> resultVals(elems);
|
||||
for (unsigned i = 0; i < elems; ++i) {
|
||||
resultVals[i] = concreteThis->createDestOp(op, rewriter, elemTy, lhss[i],
|
||||
rhss[i], thss[i], loc);
|
||||
}
|
||||
Value view = getStructFromElements(loc, resultVals, rewriter, structTy);
|
||||
rewriter.replaceOp(op, view);
|
||||
return success();
|
||||
}
|
||||
};
|
||||
|
||||
template <typename SourceOp, typename DestOp>
|
||||
struct TernaryOpConversion
|
||||
: public TernaryOpConversionBase<SourceOp, DestOp,
|
||||
TernaryOpConversion<SourceOp, DestOp>> {
|
||||
|
||||
explicit TernaryOpConversion(LLVMTypeConverter &typeConverter,
|
||||
PatternBenefit benefit = 1)
|
||||
: TernaryOpConversionBase<SourceOp, DestOp,
|
||||
TernaryOpConversion<SourceOp, DestOp>>(
|
||||
typeConverter, benefit) {}
|
||||
|
||||
using OpAdaptor = typename SourceOp::Adaptor;
|
||||
// An interface to support variant DestOp builder.
|
||||
DestOp createDestOp(SourceOp op, ConversionPatternRewriter &rewriter,
|
||||
Type elemTy, Value lhs, Value rhs, Value th,
|
||||
Location loc) const {
|
||||
return rewriter.create<DestOp>(loc, elemTy, lhs, rhs, th);
|
||||
}
|
||||
};
|
||||
|
||||
//
|
||||
// Unary
|
||||
//
|
||||
@@ -3590,9 +3663,14 @@ void populateTritonToLLVMPatterns(mlir::LLVMTypeConverter &typeConverter,
|
||||
benefit);
|
||||
patterns.add<ArithConstantSplatOpConversion>(typeConverter, benefit);
|
||||
patterns.add<AsyncWaitOpConversion>(typeConverter, benefit);
|
||||
|
||||
#define POPULATE_TERNARY_OP(SRC_OP, DST_OP) \
|
||||
patterns.add<TernaryOpConversion<SRC_OP, DST_OP>>(typeConverter, benefit);
|
||||
POPULATE_TERNARY_OP(triton::gpu::SelectOp, LLVM::SelectOp);
|
||||
#undef POPULATE_TERNARY_OP
|
||||
|
||||
#define POPULATE_BINARY_OP(SRC_OP, DST_OP) \
|
||||
patterns.add<BinaryOpConversion<SRC_OP, DST_OP>>(typeConverter, benefit);
|
||||
|
||||
POPULATE_BINARY_OP(arith::SubIOp, LLVM::SubOp) // -
|
||||
POPULATE_BINARY_OP(arith::SubFOp, LLVM::FSubOp)
|
||||
POPULATE_BINARY_OP(arith::AddIOp, LLVM::AddOp) // +
|
||||
@@ -3607,22 +3685,29 @@ void populateTritonToLLVMPatterns(mlir::LLVMTypeConverter &typeConverter,
|
||||
POPULATE_BINARY_OP(arith::RemUIOp, LLVM::URemOp)
|
||||
POPULATE_BINARY_OP(arith::AndIOp, LLVM::AndOp) // &
|
||||
POPULATE_BINARY_OP(arith::OrIOp, LLVM::OrOp) // |
|
||||
POPULATE_BINARY_OP(arith::XOrIOp, LLVM::XOrOp) // ^
|
||||
POPULATE_BINARY_OP(arith::ShLIOp, LLVM::ShlOp) // <<
|
||||
POPULATE_BINARY_OP(arith::ShRSIOp, LLVM::AShrOp) // >>
|
||||
POPULATE_BINARY_OP(arith::ShRUIOp, LLVM::LShrOp) // >>
|
||||
#undef POPULATE_BINARY_OP
|
||||
|
||||
patterns.add<CmpIOpConversion>(typeConverter, benefit);
|
||||
patterns.add<CmpFOpConversion>(typeConverter, benefit);
|
||||
#define POPULATE_CAST_OP(SRC_OP, DST_OP) \
|
||||
#define POPULATE_UNARY_OP(SRC_OP, DST_OP) \
|
||||
patterns.add<UnaryOpConversion<SRC_OP, DST_OP>>(typeConverter, benefit);
|
||||
POPULATE_CAST_OP(arith::TruncIOp, LLVM::TruncOp)
|
||||
POPULATE_CAST_OP(arith::TruncFOp, LLVM::FPTruncOp)
|
||||
POPULATE_CAST_OP(arith::ExtSIOp, LLVM::SExtOp)
|
||||
POPULATE_CAST_OP(arith::ExtUIOp, LLVM::ZExtOp)
|
||||
POPULATE_CAST_OP(arith::FPToUIOp, LLVM::FPToUIOp)
|
||||
POPULATE_CAST_OP(arith::FPToSIOp, LLVM::FPToSIOp)
|
||||
POPULATE_CAST_OP(arith::UIToFPOp, LLVM::UIToFPOp)
|
||||
POPULATE_CAST_OP(arith::SIToFPOp, LLVM::SIToFPOp)
|
||||
POPULATE_CAST_OP(arith::ExtFOp, LLVM::FPExtOp)
|
||||
#undef POPULATE_CAST_OP
|
||||
POPULATE_UNARY_OP(arith::TruncIOp, LLVM::TruncOp)
|
||||
POPULATE_UNARY_OP(arith::TruncFOp, LLVM::FPTruncOp)
|
||||
POPULATE_UNARY_OP(arith::ExtSIOp, LLVM::SExtOp)
|
||||
POPULATE_UNARY_OP(arith::ExtUIOp, LLVM::ZExtOp)
|
||||
POPULATE_UNARY_OP(arith::FPToUIOp, LLVM::FPToUIOp)
|
||||
POPULATE_UNARY_OP(arith::FPToSIOp, LLVM::FPToSIOp)
|
||||
POPULATE_UNARY_OP(arith::UIToFPOp, LLVM::UIToFPOp)
|
||||
POPULATE_UNARY_OP(arith::SIToFPOp, LLVM::SIToFPOp)
|
||||
POPULATE_UNARY_OP(arith::ExtFOp, LLVM::FPExtOp)
|
||||
POPULATE_UNARY_OP(triton::BitcastOp, LLVM::BitcastOp)
|
||||
POPULATE_UNARY_OP(triton::IntToPtrOp, LLVM::IntToPtrOp)
|
||||
POPULATE_UNARY_OP(triton::PtrToIntOp, LLVM::PtrToIntOp)
|
||||
#undef POPULATE_UNARY_OP
|
||||
|
||||
patterns.add<BroadcastOpConversion>(typeConverter, benefit);
|
||||
patterns.add<ConvertLayoutOpConversion>(typeConverter, allocation, smem,
|
||||
|
@@ -351,6 +351,9 @@ void populateTritonPatterns(TritonGPUTypeConverter &typeConverter,
|
||||
MLIRContext *context = patterns.getContext();
|
||||
patterns.add< // TODO: view should have custom pattern that views the layout
|
||||
TritonGenericPattern<triton::ViewOp>,
|
||||
TritonGenericPattern<triton::BitcastOp>,
|
||||
TritonGenericPattern<triton::IntToPtrOp>,
|
||||
TritonGenericPattern<triton::PtrToIntOp>,
|
||||
TritonGenericPattern<triton::SplatOp>, TritonBroadcastPattern,
|
||||
TritonGenericPattern<triton::AddPtrOp>, TritonReducePattern,
|
||||
TritonExpandDimsPattern, TritonMakeRangePattern, TritonDotPattern,
|
||||
|
@@ -150,9 +150,9 @@ void LoadOp::build(::mlir::OpBuilder &builder, ::mlir::OperationState &state,
|
||||
::mlir::Value ptr, ::mlir::Value mask, ::mlir::Value other,
|
||||
::mlir::triton::CacheModifier cache,
|
||||
::mlir::triton::EvictionPolicy evict, bool isVolatile) {
|
||||
TensorType ptrType = ptr.getType().dyn_cast<TensorType>();
|
||||
TensorType ptrType = ptr.getType().cast<TensorType>();
|
||||
Type elementType =
|
||||
ptrType.getElementType().dyn_cast<PointerType>().getPointeeType();
|
||||
ptrType.getElementType().cast<PointerType>().getPointeeType();
|
||||
auto shape = ptrType.getShape();
|
||||
Type resultType = RankedTensorType::get(shape, elementType);
|
||||
state.addOperands(ptr);
|
||||
|
@@ -441,11 +441,22 @@ void init_triton_ir(py::module &&m) {
|
||||
loc, self.getF32FloatAttr(v));
|
||||
})
|
||||
.def("get_null_value",
|
||||
[](mlir::OpBuilder &self, mlir::Type &type) -> mlir::Value {
|
||||
[](mlir::OpBuilder &self, mlir::Type type) -> mlir::Value {
|
||||
auto loc = self.getUnknownLoc();
|
||||
if (type.isa<mlir::FloatType>())
|
||||
return self.create<mlir::arith::ConstantOp>(
|
||||
loc, self.getF32FloatAttr(0.0));
|
||||
if (auto floatTy = type.dyn_cast<mlir::FloatType>())
|
||||
return self.create<mlir::arith::ConstantFloatOp>(
|
||||
loc, mlir::APFloat(floatTy.getFloatSemantics(), 0), floatTy);
|
||||
else if (auto intTy = type.dyn_cast<mlir::IntegerType>())
|
||||
return self.create<mlir::arith::ConstantIntOp>(loc, 0, intTy);
|
||||
else
|
||||
throw std::runtime_error("Not implemented");
|
||||
})
|
||||
.def("get_all_ones_value",
|
||||
[](mlir::OpBuilder &self, mlir::Type type) -> mlir::Value {
|
||||
auto loc = self.getUnknownLoc();
|
||||
uint64_t val = 0xFFFFFFFFFFFFFFFF;
|
||||
if (auto intTy = type.dyn_cast<mlir::IntegerType>())
|
||||
return self.create<mlir::arith::ConstantIntOp>(loc, val, intTy);
|
||||
else
|
||||
throw std::runtime_error("Not implemented");
|
||||
})
|
||||
@@ -602,7 +613,7 @@ void init_triton_ir(py::module &&m) {
|
||||
[](mlir::OpBuilder &self, mlir::Value &src,
|
||||
mlir::Type &dstType) -> mlir::Value {
|
||||
auto loc = self.getUnknownLoc();
|
||||
return self.create<mlir::arith::BitcastOp>(loc, dstType, src);
|
||||
return self.create<mlir::triton::BitcastOp>(loc, dstType, src);
|
||||
})
|
||||
// .def("create_cast", &ir::builder::create_cast)
|
||||
// .def("create_ptr_to_int", &ir::builder::create_ptr_to_int)
|
||||
@@ -1143,6 +1154,18 @@ void init_triton_ir(py::module &&m) {
|
||||
return self.create<mlir::triton::ReduceOp>(loc, resType, redOp,
|
||||
operand, axis);
|
||||
})
|
||||
.def("create_ptr_to_int",
|
||||
[](mlir::OpBuilder &self, mlir::Value &val,
|
||||
mlir::Type &type) -> mlir::Value {
|
||||
auto loc = self.getUnknownLoc();
|
||||
return self.create<mlir::triton::PtrToIntOp>(loc, type, val);
|
||||
})
|
||||
.def("create_int_to_ptr",
|
||||
[](mlir::OpBuilder &self, mlir::Value &val,
|
||||
mlir::Type &type) -> mlir::Value {
|
||||
auto loc = self.getUnknownLoc();
|
||||
return self.create<mlir::triton::IntToPtrOp>(loc, type, val);
|
||||
})
|
||||
.def("create_select",
|
||||
[](mlir::OpBuilder &self, mlir::Value &condition,
|
||||
mlir::Value &trueValue, mlir::Value &falseValue) -> mlir::Value {
|
||||
@@ -1231,7 +1254,6 @@ void init_triton_ir(py::module &&m) {
|
||||
}
|
||||
|
||||
void init_triton_translation(py::module &m) {
|
||||
|
||||
using ret = py::return_value_policy;
|
||||
|
||||
m.def("get_shared_memory_size", [](mlir::ModuleOp module) {
|
||||
|
@@ -281,141 +281,142 @@ def test_bin_op(dtype_x, dtype_y, op, device='cuda'):
|
||||
_test_binary(dtype_x, dtype_y, expr, numpy_expr, device=device)
|
||||
|
||||
|
||||
# @pytest.mark.parametrize("dtype_x, dtype_y",
|
||||
# [(dtype_x, dtype_y) for dtype_x in int_dtypes for dtype_y in int_dtypes] +
|
||||
# [(dtype_x, dtype_y) for dtype_x in uint_dtypes for dtype_y in uint_dtypes]
|
||||
# )
|
||||
# def test_floordiv(dtype_x, dtype_y, device='cuda'):
|
||||
# # Triton has IEEE, not numpy/torch, semantics for %, and those carry
|
||||
# # through to //, so we have to use a nonstandard expression to get a
|
||||
# # reference result for //.
|
||||
# expr = 'x // y'
|
||||
# numpy_expr = '((x - np.fmod(x, y)) / y)'
|
||||
# _test_binary(dtype_x, dtype_y, expr, numpy_expr, device=device)
|
||||
@pytest.mark.parametrize("dtype_x, dtype_y",
|
||||
[(dtype_x, dtype_y) for dtype_x in int_dtypes for dtype_y in int_dtypes] +
|
||||
[(dtype_x, dtype_y) for dtype_x in uint_dtypes for dtype_y in uint_dtypes]
|
||||
)
|
||||
def test_floordiv(dtype_x, dtype_y, device='cuda'):
|
||||
# Triton has IEEE, not numpy/torch, semantics for %, and those carry
|
||||
# through to //, so we have to use a nonstandard expression to get a
|
||||
# reference result for //.
|
||||
expr = 'x // y'
|
||||
numpy_expr = '((x - np.fmod(x, y)) / y)'
|
||||
_test_binary(dtype_x, dtype_y, expr, numpy_expr, device=device)
|
||||
|
||||
|
||||
# # ---------------
|
||||
# # test bitwise ops
|
||||
# # ---------------
|
||||
# @pytest.mark.parametrize("dtype_x, dtype_y, op", [
|
||||
# (dtype_x, dtype_y, op)
|
||||
# for op in ['&', '|', '^']
|
||||
# for dtype_x in dtypes + dtypes_with_bfloat16
|
||||
# for dtype_y in dtypes + dtypes_with_bfloat16
|
||||
# ])
|
||||
# def test_bitwise_op(dtype_x, dtype_y, op, device='cuda'):
|
||||
# expr = f'x {op} y'
|
||||
# if (dtype_x in uint_dtypes and dtype_y in int_dtypes and _bitwidth(dtype_x) >= _bitwidth(dtype_y)):
|
||||
# numpy_expr = f'x.astype(np.{dtype_x}) {op} y.astype(np.{dtype_x})'
|
||||
# elif (dtype_y in uint_dtypes and dtype_x in int_dtypes and _bitwidth(dtype_y) >= _bitwidth(dtype_x)):
|
||||
# numpy_expr = f'x.astype(np.{dtype_y}) {op} y.astype(np.{dtype_y})'
|
||||
# else:
|
||||
# numpy_expr = None
|
||||
# if 'float' in dtype_x + dtype_y:
|
||||
# with pytest.raises(triton.CompilationError) as exc_info:
|
||||
# _test_binary(dtype_x, dtype_y, expr, numpy_expr='np.array([])', device=device)
|
||||
# # The CompilationError must have been caused by a C++ exception with this text.
|
||||
# assert re.match('invalid operands of type', str(exc_info.value.__cause__))
|
||||
# else:
|
||||
# _test_binary(dtype_x, dtype_y, expr, numpy_expr, device=device)
|
||||
# ---------------
|
||||
# test bitwise ops
|
||||
# ---------------
|
||||
@pytest.mark.parametrize("dtype_x, dtype_y, op", [
|
||||
(dtype_x, dtype_y, op)
|
||||
for op in ['&', '|', '^']
|
||||
for dtype_x in dtypes + dtypes_with_bfloat16
|
||||
for dtype_y in dtypes + dtypes_with_bfloat16
|
||||
])
|
||||
def test_bitwise_op(dtype_x, dtype_y, op, device='cuda'):
|
||||
expr = f'x {op} y'
|
||||
if (dtype_x in uint_dtypes and dtype_y in int_dtypes and _bitwidth(dtype_x) >= _bitwidth(dtype_y)):
|
||||
numpy_expr = f'x.astype(np.{dtype_x}) {op} y.astype(np.{dtype_x})'
|
||||
elif (dtype_y in uint_dtypes and dtype_x in int_dtypes and _bitwidth(dtype_y) >= _bitwidth(dtype_x)):
|
||||
numpy_expr = f'x.astype(np.{dtype_y}) {op} y.astype(np.{dtype_y})'
|
||||
else:
|
||||
numpy_expr = None
|
||||
if 'float' in dtype_x + dtype_y:
|
||||
with pytest.raises(triton.CompilationError) as exc_info:
|
||||
_test_binary(dtype_x, dtype_y, expr, numpy_expr='np.array([])', device=device)
|
||||
# The CompilationError must have been caused by a C++ exception with this text.
|
||||
assert re.match('invalid operands of type', str(exc_info.value.__cause__))
|
||||
else:
|
||||
_test_binary(dtype_x, dtype_y, expr, numpy_expr, device=device)
|
||||
|
||||
|
||||
# @pytest.mark.parametrize("dtype_x, dtype_y, op", [
|
||||
# (dtype_x, dtype_y, op)
|
||||
# for op in ['<<', '>>']
|
||||
# for dtype_x in int_dtypes + uint_dtypes
|
||||
# for dtype_y in int_dtypes + uint_dtypes
|
||||
# ])
|
||||
# def test_shift_op(dtype_x, dtype_y, op, device='cuda'):
|
||||
# expr = f'x {op} y'
|
||||
# bw = max(_bitwidth(dtype_x), _bitwidth(dtype_y))
|
||||
# dtype_z = f'uint{bw}'
|
||||
# numpy_expr = f'x.astype(np.{dtype_z}) {op} y.astype(np.{dtype_z})'
|
||||
# _test_binary(dtype_x, dtype_y, expr, numpy_expr, device=device, y_low=0, y_high=65)
|
||||
@pytest.mark.parametrize("dtype_x, dtype_y, op", [
|
||||
(dtype_x, dtype_y, op)
|
||||
for op in ['<<', '>>']
|
||||
for dtype_x in int_dtypes + uint_dtypes
|
||||
for dtype_y in int_dtypes + uint_dtypes
|
||||
])
|
||||
def test_shift_op(dtype_x, dtype_y, op, device='cuda'):
|
||||
expr = f'x {op} y'
|
||||
bw = max(_bitwidth(dtype_x), _bitwidth(dtype_y))
|
||||
dtype_z = f'uint{bw}'
|
||||
numpy_expr = f'x.astype(np.{dtype_z}) {op} y.astype(np.{dtype_z})'
|
||||
_test_binary(dtype_x, dtype_y, expr, numpy_expr, device=device, y_low=0, y_high=65)
|
||||
|
||||
|
||||
# # ---------------
|
||||
# # test compare ops
|
||||
# # ---------------
|
||||
# ops = ['==', '!=', '>', '<', '>=', '<=']
|
||||
# ---------------
|
||||
# test compare ops
|
||||
# ---------------
|
||||
ops = ['==', '!=', '>', '<', '>=', '<=']
|
||||
|
||||
|
||||
# @pytest.mark.parametrize("dtype_x, dtype_y, op, mode_x, mode_y",
|
||||
# # real
|
||||
# [
|
||||
# (dtype_x, dtype_y, op, 'real', 'real')
|
||||
# for op in ops
|
||||
# for dtype_x in dtypes
|
||||
# for dtype_y in dtypes
|
||||
# ] +
|
||||
# # NaNs
|
||||
# [('float32', 'float32', op, mode_x, mode_y)
|
||||
# for op in ops
|
||||
# for mode_x, mode_y in [('nan', 'real'),
|
||||
# ('real', 'nan'),
|
||||
# ('nan', 'nan')]
|
||||
@pytest.mark.parametrize("dtype_x, dtype_y, op, mode_x, mode_y",
|
||||
# real
|
||||
[
|
||||
(dtype_x, dtype_y, op, 'real', 'real')
|
||||
for op in ops
|
||||
for dtype_x in dtypes
|
||||
for dtype_y in dtypes
|
||||
] +
|
||||
# NaNs
|
||||
[('float32', 'float32', op, mode_x, mode_y)
|
||||
for op in ops
|
||||
for mode_x, mode_y in [('nan', 'real'),
|
||||
('real', 'nan'),
|
||||
('nan', 'nan')]
|
||||
|
||||
# ])
|
||||
# def test_compare_op(dtype_x, dtype_y, op, mode_x, mode_y, device='cuda'):
|
||||
# expr = f'x {op} y'
|
||||
# if (dtype_x in uint_dtypes and dtype_y in int_dtypes and _bitwidth(dtype_x) >= _bitwidth(dtype_y)):
|
||||
# numpy_expr = f'x.astype(np.{dtype_x}) {op} y.astype(np.{dtype_x})'
|
||||
# elif (dtype_y in uint_dtypes and dtype_x in int_dtypes and _bitwidth(dtype_y) >= _bitwidth(dtype_x)):
|
||||
# numpy_expr = f'x.astype(np.{dtype_y}) {op} y.astype(np.{dtype_y})'
|
||||
# else:
|
||||
# numpy_expr = None
|
||||
# _test_binary(dtype_x, dtype_y, expr, numpy_expr, mode_x=mode_x, mode_y=mode_y, device=device)
|
||||
])
|
||||
def test_compare_op(dtype_x, dtype_y, op, mode_x, mode_y, device='cuda'):
|
||||
expr = f'x {op} y'
|
||||
if (dtype_x in uint_dtypes and dtype_y in int_dtypes and _bitwidth(dtype_x) >= _bitwidth(dtype_y)):
|
||||
numpy_expr = f'x.astype(np.{dtype_x}) {op} y.astype(np.{dtype_x})'
|
||||
elif (dtype_y in uint_dtypes and dtype_x in int_dtypes and _bitwidth(dtype_y) >= _bitwidth(dtype_x)):
|
||||
numpy_expr = f'x.astype(np.{dtype_y}) {op} y.astype(np.{dtype_y})'
|
||||
else:
|
||||
numpy_expr = None
|
||||
_test_binary(dtype_x, dtype_y, expr, numpy_expr, mode_x=mode_x, mode_y=mode_y, device=device)
|
||||
|
||||
|
||||
# # ---------------
|
||||
# # test where
|
||||
# # ---------------
|
||||
# @pytest.mark.parametrize("dtype", dtypes_with_bfloat16 + ["*int32"])
|
||||
# def test_where(dtype):
|
||||
# select_ptrs = False
|
||||
# if dtype == "*int32":
|
||||
# dtype = "int64"
|
||||
# select_ptrs = True
|
||||
# check_type_supported(dtype)
|
||||
# ---------------
|
||||
# test where
|
||||
# ---------------
|
||||
@pytest.mark.parametrize("dtype", dtypes_with_bfloat16 + ["*int32"])
|
||||
def test_where(dtype):
|
||||
select_ptrs = False
|
||||
if dtype == "*int32":
|
||||
dtype = "int64"
|
||||
select_ptrs = True
|
||||
check_type_supported(dtype)
|
||||
|
||||
# @triton.jit
|
||||
# def where_kernel(cond_ptr, a_ptr, b_ptr, output_ptr, n_elements,
|
||||
# BLOCK_SIZE: tl.constexpr,
|
||||
# TEST_POINTERS: tl.constexpr):
|
||||
# offsets = tl.program_id(axis=0) * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
|
||||
# mask = offsets < n_elements
|
||||
# decide = tl.load(cond_ptr + offsets, mask=mask)
|
||||
# if TEST_POINTERS:
|
||||
# a = tl.load(a_ptr + offsets, mask=mask).to(tl.pi32_t)
|
||||
# b = tl.load(b_ptr + offsets, mask=mask).to(tl.pi32_t)
|
||||
# else:
|
||||
# a = tl.load(a_ptr + offsets, mask=mask)
|
||||
# b = tl.load(b_ptr + offsets, mask=mask)
|
||||
# output = tl.where(decide, a, b)
|
||||
# tl.store(output_ptr + offsets, output, mask=mask)
|
||||
@triton.jit
|
||||
def where_kernel(cond_ptr, a_ptr, b_ptr, output_ptr, n_elements,
|
||||
BLOCK_SIZE: tl.constexpr,
|
||||
TEST_POINTERS: tl.constexpr):
|
||||
offsets = tl.program_id(axis=0) * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
|
||||
mask = offsets < n_elements
|
||||
decide = tl.load(cond_ptr + offsets, mask=mask)
|
||||
if TEST_POINTERS:
|
||||
a = tl.load(a_ptr + offsets, mask=mask).to(tl.pi32_t)
|
||||
b = tl.load(b_ptr + offsets, mask=mask).to(tl.pi32_t)
|
||||
else:
|
||||
a = tl.load(a_ptr + offsets, mask=mask)
|
||||
b = tl.load(b_ptr + offsets, mask=mask)
|
||||
output = tl.where(decide, a, b)
|
||||
tl.store(output_ptr + offsets, output, mask=mask)
|
||||
|
||||
# SIZE = 1_000
|
||||
# rs = RandomState(17)
|
||||
# cond = numpy_random(SIZE, 'bool', rs)
|
||||
# x = numpy_random(SIZE, dtype_str=dtype, rs=rs)
|
||||
# y = numpy_random(SIZE, dtype_str=dtype, rs=rs)
|
||||
# z = np.where(cond, x, y)
|
||||
SIZE = 1_000
|
||||
rs = RandomState(17)
|
||||
cond = numpy_random(SIZE, 'bool', rs)
|
||||
x = numpy_random(SIZE, dtype_str=dtype, rs=rs)
|
||||
y = numpy_random(SIZE, dtype_str=dtype, rs=rs)
|
||||
z = np.where(cond, x, y)
|
||||
|
||||
# cond_tri = to_triton(cond, device='cuda')
|
||||
# x_tri = to_triton(x, device='cuda', dst_type=dtype)
|
||||
# y_tri = to_triton(y, device='cuda', dst_type=dtype)
|
||||
# z_tri = to_triton(np.empty(SIZE, dtype=z.dtype), device='cuda', dst_type=dtype)
|
||||
cond_tri = to_triton(cond, device='cuda')
|
||||
x_tri = to_triton(x, device='cuda', dst_type=dtype)
|
||||
y_tri = to_triton(y, device='cuda', dst_type=dtype)
|
||||
z_tri = to_triton(np.empty(SIZE, dtype=z.dtype), device='cuda', dst_type=dtype)
|
||||
|
||||
# grid = lambda meta: (triton.cdiv(SIZE, meta['BLOCK_SIZE']),)
|
||||
# where_kernel[grid](cond_tri, x_tri, y_tri, z_tri, SIZE, BLOCK_SIZE=1024, TEST_POINTERS=select_ptrs)
|
||||
# assert (z == to_numpy(z_tri)).all()
|
||||
grid = lambda meta: (triton.cdiv(SIZE, meta['BLOCK_SIZE']),)
|
||||
where_kernel[grid](cond_tri, x_tri, y_tri, z_tri, SIZE, BLOCK_SIZE=1024, TEST_POINTERS=select_ptrs)
|
||||
assert (z == to_numpy(z_tri)).all()
|
||||
|
||||
|
||||
# TODO: wrong result
|
||||
# def test_where_broadcast():
|
||||
# @triton.jit
|
||||
# def where_kernel(cond_ptr, a_ptr, out_ptr, BLOCK_SIZE: tl.constexpr):
|
||||
# xoffsets = tl.reshape(tl.arange(0, BLOCK_SIZE), [BLOCK_SIZE, 1])
|
||||
# yoffsets = tl.reshape(tl.arange(0, BLOCK_SIZE), [1, BLOCK_SIZE])
|
||||
# xoffsets = tl.arange(0, BLOCK_SIZE)[:, None]
|
||||
# yoffsets = tl.arange(0, BLOCK_SIZE)[None, :]
|
||||
|
||||
# mask = tl.load(cond_ptr + yoffsets)
|
||||
# vals = tl.load(a_ptr + yoffsets + BLOCK_SIZE * xoffsets)
|
||||
@@ -424,8 +425,8 @@ def test_bin_op(dtype_x, dtype_y, op, device='cuda'):
|
||||
|
||||
# @triton.jit
|
||||
# def where_scalar_condition(a_ptr, out_ptr, BLOCK_SIZE: tl.constexpr):
|
||||
# xoffsets = tl.reshape(tl.arange(0, BLOCK_SIZE), [BLOCK_SIZE, 1])
|
||||
# yoffsets = tl.reshape(tl.arange(0, BLOCK_SIZE), [1, BLOCK_SIZE])
|
||||
# xoffsets = tl.arange(0, BLOCK_SIZE)[:, None]
|
||||
# yoffsets = tl.arange(0, BLOCK_SIZE)[None, :]
|
||||
# mask = 0
|
||||
# vals = tl.load(a_ptr + yoffsets + BLOCK_SIZE * xoffsets)
|
||||
# res = tl.where(mask, vals, 0.)
|
||||
@@ -451,17 +452,19 @@ def test_bin_op(dtype_x, dtype_y, op, device='cuda'):
|
||||
# # ---------------
|
||||
|
||||
|
||||
# @pytest.mark.parametrize("dtype_x, expr", [
|
||||
# (dtype_x, ' -x') for dtype_x in dtypes_with_bfloat16
|
||||
# ] + [
|
||||
# (dtype_x, ' ~x') for dtype_x in int_dtypes
|
||||
# ])
|
||||
# def test_unary_op(dtype_x, expr, device='cuda'):
|
||||
# _test_unary(dtype_x, expr, device=device)
|
||||
@pytest.mark.parametrize("dtype_x, expr", [
|
||||
(dtype_x, ' -x') for dtype_x in dtypes_with_bfloat16
|
||||
] + [
|
||||
(dtype_x, ' ~x') for dtype_x in int_dtypes
|
||||
])
|
||||
def test_unary_op(dtype_x, expr, device='cuda'):
|
||||
_test_unary(dtype_x, expr, device=device)
|
||||
|
||||
# # ----------------
|
||||
# # test math ops
|
||||
# # ----------------
|
||||
|
||||
# TODO: Math module
|
||||
# # @pytest.mark.parametrize("expr", [
|
||||
# # 'exp', 'log', 'cos', 'sin'
|
||||
# # ])
|
||||
@@ -479,17 +482,18 @@ def test_bin_op(dtype_x, dtype_y, op, device='cuda'):
|
||||
# # ----------------
|
||||
|
||||
|
||||
# def make_ptr_str(name, shape):
|
||||
# rank = len(shape)
|
||||
# offsets = []
|
||||
# stride = 1
|
||||
# for i in reversed(range(rank)):
|
||||
# idx = ', '.join([':' if ii == i else 'None' for ii in range(rank)])
|
||||
# offsets += [f'tl.arange(0, {shape[i]})[{idx}]*{stride}']
|
||||
# stride *= shape[i]
|
||||
# return f"{name} + {' + '.join(offsets)}"
|
||||
def make_ptr_str(name, shape):
|
||||
rank = len(shape)
|
||||
offsets = []
|
||||
stride = 1
|
||||
for i in reversed(range(rank)):
|
||||
idx = ', '.join([':' if ii == i else 'None' for ii in range(rank)])
|
||||
offsets += [f'tl.arange(0, {shape[i]})[{idx}]*{stride}']
|
||||
stride *= shape[i]
|
||||
return f"{name} + {' + '.join(offsets)}"
|
||||
|
||||
|
||||
# TODO: handle `%4 = triton_gpu.convert_layout %3 : (tensor<32xi32, #blocked0>) -> tensor<32xi32, #triton_gpu.slice<{dim = 0, parent = #blocked1}>>``
|
||||
# @pytest.mark.parametrize("expr, dtype_str", [
|
||||
# (f'x[{s}]', d)
|
||||
# for s in ['None, :', ':, None', 'None, :, :', ':, :, None']
|
||||
|
@@ -45,6 +45,7 @@ def str_to_ty(name):
|
||||
"u32": triton.language.uint32,
|
||||
"u64": triton.language.uint64,
|
||||
"B": triton.language.int1,
|
||||
"i1": triton.language.int1,
|
||||
}
|
||||
return tys[name]
|
||||
|
||||
|
@@ -729,9 +729,10 @@ def cat(input, other, _builder=None):
|
||||
|
||||
|
||||
@builtin
|
||||
def reshape(input, shape, _builder=None):
|
||||
def view(input, shape, _builder=None):
|
||||
"""
|
||||
Tries to reshape the given tensor to a new shape.
|
||||
Returns a tensor with the same elements as `input` but a different shape.
|
||||
The order of the elements may not be preserved.
|
||||
|
||||
:param input: The input tensor.
|
||||
:type input:
|
||||
@@ -740,7 +741,7 @@ def reshape(input, shape, _builder=None):
|
||||
|
||||
"""
|
||||
shape = [x.value for x in shape]
|
||||
return semantic.reshape(input, shape, _builder)
|
||||
return semantic.view(input, shape, _builder)
|
||||
|
||||
|
||||
# -----------------------
|
||||
@@ -1151,7 +1152,7 @@ def ravel(x):
|
||||
:param x: the input tensor
|
||||
:type x: Block
|
||||
"""
|
||||
return triton.language.reshape(x, [x.numel])
|
||||
return triton.language.view(x, [x.numel])
|
||||
|
||||
|
||||
@triton.jit
|
||||
|
@@ -345,7 +345,7 @@ def invert(input: tl.tensor,
|
||||
input_sca_ty = input.type.scalar
|
||||
if input_sca_ty.is_ptr() or input_sca_ty.is_floating():
|
||||
raise ValueError("wrong type argument to unary invert (" + input_sca_ty.__repr__() + ")")
|
||||
_1 = tl.tensor(ir.constant.get_all_ones_value(input_sca_ty.to_ir(builder)), input_sca_ty)
|
||||
_1 = tl.tensor(builder.get_all_ones_value(input_sca_ty.to_ir(builder)), input_sca_ty)
|
||||
return xor_(input, _1, builder)
|
||||
|
||||
|
||||
@@ -481,11 +481,13 @@ def zeros(shape: List[int], dtype: tl.dtype, builder: ir.builder) -> tl.tensor:
|
||||
def view(input: tl.tensor,
|
||||
dst_shape: List[int],
|
||||
builder: ir.builder) -> tl.tensor:
|
||||
# TODO: disable when TritonToTritonGPU handles views properly
|
||||
assert len(input.shape) == len(dst_shape)
|
||||
numel = 1
|
||||
for s in dst_shape:
|
||||
numel *= s
|
||||
if input.type.numel != numel:
|
||||
raise ValueError("cannot reshape block of different shape")
|
||||
raise ValueError("cannot view block of different shape")
|
||||
ret_ty = tl.block_type(input.type.scalar, dst_shape)
|
||||
return tl.tensor(builder.create_view(input.handle, dst_shape), ret_ty)
|
||||
|
||||
@@ -516,7 +518,7 @@ def broadcast_impl_shape(input: tl.tensor,
|
||||
for i in range(len(src_shape)):
|
||||
if shape[i] != src_shape[i] and src_shape[i] != 1:
|
||||
raise ValueError(f"Cannot broadcast, the expanded size of the tensor ({shape[i]})"
|
||||
f" must match the existing size ({src_shape[1]}) at non-singleton dimension"
|
||||
f" must match the existing size ({src_shape[i]}) at non-singleton dimension"
|
||||
f" {i}: {src_shape}, {shape}")
|
||||
ret_ty = tl.block_type(input.type.scalar, shape)
|
||||
return tl.tensor(builder.create_broadcast(input.handle, shape), ret_ty)
|
||||
@@ -679,7 +681,7 @@ def cast(input: tl.tensor,
|
||||
if src_sca_ty.is_ptr() and dst_sca_ty.is_int():
|
||||
bitwidth = dst_sca_ty.int_bitwidth
|
||||
if bitwidth == 64:
|
||||
return tl.tensor(builder.create_cast(ir.PtrToInt, input.handle, dst_ty.to_ir(builder)),
|
||||
return tl.tensor(builder.create_ptr_to_int(input.handle, dst_ty.to_ir(builder)),
|
||||
dst_ty)
|
||||
if bitwidth == 1:
|
||||
return not_equal(cast(input, tl.int64, builder),
|
||||
@@ -989,18 +991,21 @@ def where(condition: tl.tensor,
|
||||
builder: ir.builder) -> tl.tensor:
|
||||
condition = cast(condition, tl.int1, builder)
|
||||
if condition.type.is_block():
|
||||
x = broadcast_impl_shape(x, condition.type.get_block_shapes(), builder)
|
||||
y = broadcast_impl_shape(y, condition.type.get_block_shapes(), builder)
|
||||
condition, x = broadcast_impl_value(condition, x, builder)
|
||||
x, y = broadcast_impl_value(x, y, builder)
|
||||
condition, x = broadcast_impl_value(condition, x, builder)
|
||||
|
||||
x, y = binary_op_type_checking_impl(x, y, builder, True, True)
|
||||
if not condition.type.is_block():
|
||||
condition, _ = broadcast_impl_value(condition, x, builder)
|
||||
ret_ty = x.type
|
||||
return tl.tensor(builder.create_select(condition.handle, x.handle, y.handle), ret_ty)
|
||||
|
||||
|
||||
# ===----------------------------------------------------------------------===//
|
||||
# Reductions
|
||||
# ===----------------------------------------------------------------------===
|
||||
|
||||
|
||||
def reduce_impl(input: tl.tensor, axis: int, builder: ir.builder, name: str,
|
||||
FLOAT_OP: ir.REDUCE_OP, INT_OP: ir.REDUCE_OP) -> tl.tensor:
|
||||
scalar_ty = input.type.scalar
|
||||
|
Reference in New Issue
Block a user