[PYTHON][NN][CONV] Fixed typo in dx computation

This commit is contained in:
Philippe Tillet
2020-02-24 22:45:49 -05:00
committed by Philippe Tillet
parent 01154f24db
commit 420e36a038

View File

@@ -64,22 +64,26 @@ class _conv2d(torch.autograd.Function):
poffw = (offw + padding[1]) % stride[1]
pad_h = int((padding[0] + (stride[0] - 1)*offh) / stride[0])
pad_w = int((padding[1] + (stride[1] - 1)*offw) / stride[1])
if offh >= r or offw >= s:
dx[:, :, poffh::stride[0], poffw::stride[1]] = 0
if poffh >= r or poffw >= s:
dx[:, :, offh::stride[0], offw::stride[1]] = 0
else:
triton.ops.einsum(f'nk(h - r + pad_h)(w - s + pad_w),kcrs->nchw',
dypad[:, :, :, :],
weight[:, :, offh::stride[0], offw::stride[1]],
output = dx[:, :, poffh::stride[0], poffw::stride[1]],
weight[:, :, poffh::stride[0], poffw::stride[1]],
output = dx[:, :, offh::stride[0], offw::stride[1]],
mask = acc_bitmask,
values = {'pad_h': pad_h,
'pad_w': pad_w})
#if stride[0] == 2 and r == 3:
# print('dx: ', dx[0,0,0,0])
# gradient for the weight
dw = None
if ctx.needs_input_grad[1]:
dw = torch.empty_like(weight)
triton.ops.einsum(f'nc(p*{stride[0]}+r-{padding[0]})(q*{stride[1]}+s-{padding[1]}),nkpq->kcrs',
input, dy, output = dw, mask = acc_bitmask)
#print('dw: ', dw.view(-1)[0])
return dx, dw, None, None, None, None, None, None
conv2d = _conv2d.apply
@@ -95,7 +99,8 @@ class Conv2d(nn.Conv2d):
self.acc_bitmask = acc_bitmask
def forward(self, input):
#if self.kernel_size[0] == 3:
#if self.kernel_size[0] == 3 and self.stride[0] != 1:
# print(self.padding, self.stride, input.size(), self.weight.size())
# return F.conv2d(input, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
return conv2d(input, self.weight, self.bias, self.stride,
self.padding, self.dilation, self.groups,
@@ -113,4 +118,49 @@ def replace_conv2d(model, acc_bitmask = None):
yparam.data.copy_(xparam.data)
setattr(model, child_name, conv2d)
else:
replace_conv2d(child, acc_bitmask)
replace_conv2d(child, acc_bitmask)
# initialize input
#N, C, H, W, K, RS = 16, 32, 24, 24, 64, 3
#torch.Size([128, 64, 30, 30]) torch.Size([128, 64, 3, 3])
#torch.Size([128, 128, 15, 15]) torch.Size([256, 128, 3, 3])
#torch.Size([128, 256, 8, 8]) torch.Size([512, 256, 3, 3])
if __name__ == '__main__':
#N, C, H, W, K, RS = 128, 64, 30, 30, 128, 3
#N, C, H, W, K, RS = 128, 128, 15, 15, 256, 3
N, C, H, W, K, RS = 128, 256, 8, 8, 512, 3
pad, stride = 1, 2
torch.manual_seed(0)
x = torch.randn((N, C, H, W)).cuda()
x.requires_grad_(True)
# initialize layers
torch.manual_seed(0)
rconv2d = nn.Conv2d(C, K, RS, stride, pad, bias=False).cuda()
torch.manual_seed(0)
tconv2d = Conv2d(C, K, RS, stride, pad, bias=False).cuda()
#rconv2d.weight.data[:] = 1
#tconv2d.weight.data[:] = 1
ry = rconv2d(x)
ty = tconv2d(x)
# reference
dy = torch.randn(ry.size()).cuda()
#dy.data[:] = 1
ry.backward(dy)
rdx = x.grad.clone()
rdw = rconv2d.weight.grad.clone()
x.grad.zero_()
# triton
ty.backward(dy)
tdx = x.grad.clone()
tdw = tconv2d.weight.grad.clone()
x.grad.zero_()
# print error
print((ry - ty).abs().max())
print((rdx - tdx).abs().max())
print((rdw - tdw).abs().max())
#print((rdx - tdx).abs())
#print((rdx[0,0,:,:] - tdx[0,0,:,:]))
#print(rdx[0,0,:,:])
#print(tdx[0,0,:,:])