[Triton-MLIR][Backend] Add ReduceOpConversion into TritonGPUToLLVM conversion (#774)

What is done in this PR:
- [x] Add `ConvertLayout`, `getSizePerThread` and `getShapePerCTA`
implementation for `SliceEncodingAttr`
- [x] Split `emitIndices` into two phases:
`emitBaseIndexForBlockedLayout` and `emitOffsetForBlockedLayout`
- [x] Add `ReduceOpConversion::matchAndRewriteBasic` implementation
- [x] Add `ReduceOpConversion::matchAndRewriteFast` implementation with
ptx instruction `shfl.sync`
- [x] Add support for scalar value in `StoreOpConversion`
- [x] Add Reduce1d and Reduce2d unit tests and pass all unit tests

Co-authored-by: Qingyi Liu <liuqingyi1993@gmail.com>
This commit is contained in:
Qingyi Liu
2022-10-28 11:07:45 +08:00
committed by GitHub
parent 3e6cc6d66c
commit 42db3538e4
7 changed files with 680 additions and 57 deletions

115
python/tests/test_reduce.py Normal file
View File

@@ -0,0 +1,115 @@
import pytest
import torch
from torch.testing import assert_close
import triton
import triton.language as tl
dtype_mapping = {
'float16': torch.float16,
'float32': torch.float32,
'float64': torch.float64,
}
def patch_kernel(template, to_replace):
kernel = triton.JITFunction(template.fn)
for key, value in to_replace.items():
kernel.src = kernel.src.replace(key, value)
return kernel
@triton.jit
def reduce1d_kernel(x_ptr, z_ptr, block: tl.constexpr):
x = tl.load(x_ptr + tl.arange(0, block))
tl.store(z_ptr, tl.OP(x, axis=0))
@triton.jit
def reduce2d_kernel(x_ptr, z_ptr, axis: tl.constexpr, block_m: tl.constexpr, block_n: tl.constexpr):
range_m = tl.arange(0, block_m)
range_n = tl.arange(0, block_n)
x = tl.load(x_ptr + range_m[:, None] * block_n + range_n[None, :])
z = tl.OP(x, axis=axis)
if axis == 0:
tl.store(z_ptr + range_n, z)
else:
tl.store(z_ptr + range_m, z)
reduce1d_configs = [
(op, dtype, shape)
for op in ['sum', 'min', 'max']
for dtype in ['float16', 'float32', 'float64']
for shape in [4, 8, 16, 32, 64, 128, 512, 1024]
]
@pytest.mark.parametrize('op, dtype, shape', reduce1d_configs)
def test_reduce1d(op, dtype, shape):
dtype = dtype_mapping[dtype]
x = torch.randn((shape,), device='cuda', dtype=dtype)
z = torch.empty(
tuple(),
device=x.device,
dtype=dtype,
)
kernel = patch_kernel(reduce1d_kernel, {'OP': op})
grid = (1,)
kernel[grid](x_ptr=x, z_ptr=z, block=shape)
if op == 'sum':
golden_z = torch.sum(x, dtype=dtype)
elif op == 'min':
golden_z = torch.min(x)
else:
golden_z = torch.max(x)
if op == 'sum':
if shape >= 256:
assert_close(z, golden_z, rtol=0.05, atol=0.1)
elif shape >= 32:
assert_close(z, golden_z, rtol=0.05, atol=0.02)
else:
assert_close(z, golden_z, rtol=0.01, atol=0.01)
else:
assert_close(z, golden_z, rtol=0.001, atol=0.001)
reduce2d_configs = [
(op, dtype, shape, axis)
for op in ['sum', 'min', 'max']
for dtype in ['float16', 'float32', 'float64']
for shape in [(1, 4), (1, 8), (1, 16), (1, 32), (2, 32), (4, 32), (4, 128), (32, 64)]
for axis in [0, 1]
]
@pytest.mark.parametrize('op, dtype, shape, axis', reduce2d_configs)
def test_reduce2d(op, dtype, shape, axis):
dtype = dtype_mapping[dtype]
x = torch.randn(shape, device='cuda', dtype=dtype)
reduced_shape = (shape[1 - axis],)
z = torch.empty(reduced_shape, device=x.device, dtype=dtype)
kernel = patch_kernel(reduce2d_kernel, {'OP': op})
grid = (1,)
kernel[grid](x_ptr=x, z_ptr=z, axis=axis, block_m=shape[0], block_n=shape[1])
if op == 'sum':
golden_z = torch.sum(x, dim=axis, keepdim=False, dtype=dtype)
elif op == 'min':
golden_z = torch.min(x, dim=axis, keepdim=False)[0]
else:
golden_z = torch.max(x, dim=axis, keepdim=False)[0]
if op == 'sum':
if shape[axis] >= 256:
assert_close(z, golden_z, rtol=0.05, atol=0.1)
elif shape[axis] >= 32:
assert_close(z, golden_z, rtol=0.05, atol=0.02)
else:
assert_close(z, golden_z, rtol=0.01, atol=0.01)
else:
assert_close(z, golden_z, rtol=0.001, atol=0.001)