[Triton-MLIR][BACKEND] Fix masked load store op vector size (#785)
Correct the Load/Store Op's vector size with the mask's alignment correctly considered. Some cases: ```mlir // num_warp = 2 // block_size = 128 func @vecadd_mask_align_16(%a_ptr: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %b_ptr: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %out_ptr: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %n_elements: i32 {tt.divisibility = 16 : i32}) { // mask = make_range(128) < n_element } ``` This should get the vec=2 `ld`/`st` instructions. While the following example ```mlir // num_warp = 2 // block_size = 128 func @vecadd_mask_align_16(%a_ptr: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %b_ptr: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %out_ptr: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %n_elements: i32) { // mask = make_range(128) < n_element } ``` it should get the vec=1 `ld`/`st` instructions.
This commit is contained in:
@@ -161,6 +161,37 @@ module attributes {"triton_gpu.num-warps" = 2 : i32} {
|
||||
|
||||
// -----
|
||||
|
||||
// This test verifies the vectorization of Load and Store Ops.
|
||||
#blocked = #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [32], warpsPerCTA = [2], order = [0]}>
|
||||
// Note, the %n_elements doesn't have a "tt.divisibility" hint, so Triton assumes it's divisibility is 1, this should effect the mask's alignment and further restrict the load/store ops' vector width to be 1.
|
||||
module attributes {"triton_gpu.num-warps" = 2 : i32} {
|
||||
func @vecadd_masked_vec1(%arg0: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %arg1: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %arg2: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %n_elements: i32) {
|
||||
%c64_i32 = arith.constant 64 : i32
|
||||
%0 = tt.get_program_id {axis = 0 : i32} : i32
|
||||
%1 = arith.muli %0, %c64_i32 : i32
|
||||
%2 = tt.make_range {end = 64 : i32, start = 0 : i32} : tensor<64xi32, #blocked>
|
||||
%3 = tt.splat %1 : (i32) -> tensor<64xi32, #blocked>
|
||||
%4 = arith.addi %3, %2 : tensor<64xi32, #blocked>
|
||||
%5 = tt.splat %arg0 : (!tt.ptr<f32>) -> tensor<64x!tt.ptr<f32>, #blocked>
|
||||
%6 = tt.addptr %5, %4 : tensor<64x!tt.ptr<f32>, #blocked>
|
||||
%7 = tt.splat %arg1 : (!tt.ptr<f32>) -> tensor<64x!tt.ptr<f32>, #blocked>
|
||||
%8 = tt.addptr %7, %4 : tensor<64x!tt.ptr<f32>, #blocked>
|
||||
%9 = tt.splat %n_elements : (i32) -> tensor<64xi32, #blocked>
|
||||
%10 = "triton_gpu.cmpi"(%4, %9) {predicate = 2 : i64} : (tensor<64xi32, #blocked>, tensor<64xi32, #blocked>) -> tensor<64xi1, #blocked>
|
||||
// load op has a vector width = 1 due to the %mask's alignment
|
||||
// CHECK: ld.global.b32
|
||||
%11 = tt.load %6, %10 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<64xf32, #blocked>
|
||||
%12 = tt.load %8, %10 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<64xf32, #blocked>
|
||||
%13 = arith.addf %11, %12 : tensor<64xf32, #blocked>
|
||||
%14 = tt.splat %arg2 : (!tt.ptr<f32>) -> tensor<64x!tt.ptr<f32>, #blocked>
|
||||
%15 = tt.addptr %14, %4 : tensor<64x!tt.ptr<f32>, #blocked>
|
||||
tt.store %15, %13, %10 : tensor<64xf32, #blocked>
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
#blocked0 = #triton_gpu.blocked<{sizePerThread = [8], threadsPerWarp = [32], warpsPerCTA = [1], order = [0]}>
|
||||
module attributes {"triton_gpu.num-warps" = 1 : i32} {
|
||||
// CHECK-LABEL: global_load_store_vec8
|
||||
@@ -682,4 +713,4 @@ module attributes {"triton_gpu.num-warps" = 1 : i32} {
|
||||
%0 = triton_gpu.convert_layout %arg0 : (tensor<128x32xf32, #blocked0>) -> tensor<128x32xf32, #shared0>
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user