[Triton-MLIR] tt.dot
operands now must have DotOperand layout; also added prefetch pass prototype (#712)
Co-authored-by: Jokeren <kerenzhou@openai.com> Co-authored-by: Phil Tillet <phil@openai.com> Co-authored-by: Superjomn <yanchunwei@outlook.com>
This commit is contained in:
@@ -669,22 +669,26 @@ module attributes {"triton_gpu.num-warps" = 1 : i32} {
|
||||
#blocked0 = #triton_gpu.blocked<{sizePerThread = [1, 4], threadsPerWarp = [8, 4], warpsPerCTA = [1, 1], order = [1, 0]}>
|
||||
#shared0 = #triton_gpu.shared<{vec = 1, perPhase=2, maxPhase=8 ,order = [1, 0]}>
|
||||
#mma0 = #triton_gpu.mma<{version=2, warpsPerCTA=[1,1]}>
|
||||
#dot_operand_a = #triton_gpu.dot_op<{opIdx=0, parent=#mma0}>
|
||||
#dot_operand_b = #triton_gpu.dot_op<{opIdx=1, parent=#mma0}>
|
||||
module attributes {"triton_gpu.num-warps" = 1 : i32} {
|
||||
// CHECK-LABEL: convert_dot
|
||||
func @convert_dot(%A: tensor<16x16xf16, #blocked0>, %B: tensor<16x16xf16, #blocked0>) {
|
||||
%AA = triton_gpu.convert_layout %A : (tensor<16x16xf16, #blocked0>) -> tensor<16x16xf16, #shared0>
|
||||
%BB = triton_gpu.convert_layout %B : (tensor<16x16xf16, #blocked0>) -> tensor<16x16xf16, #shared0>
|
||||
// CHECK: llvm.inline_asm
|
||||
// CHECK-SAME: ldmatrix.sync.aligned.m8n8.x4
|
||||
// CHECK: llvm.inline_asm
|
||||
// CHECK-SAME: ldmatrix.sync.aligned.m8n8.x4
|
||||
%AA_DOT = triton_gpu.convert_layout %AA : (tensor<16x16xf16, #shared0>) -> tensor<16x16xf16, #dot_operand_a>
|
||||
%BB_DOT = triton_gpu.convert_layout %BB : (tensor<16x16xf16, #shared0>) -> tensor<16x16xf16, #dot_operand_b>
|
||||
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf32, #mma0>
|
||||
// CHECK: llvm.inline_asm
|
||||
// CHECK-SAME: ldmatrix.sync.aligned.m8n8.x4
|
||||
// CHECK: llvm.inline_asm
|
||||
// CHECK-SAME: ldmatrix.sync.aligned.m8n8.x4
|
||||
|
||||
// CHECK: llvm.inline_asm
|
||||
// CHECK-SAME: mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32
|
||||
// CHECK: llvm.inline_asm
|
||||
// CHECK-SAME: mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32
|
||||
%D = tt.dot %AA, %BB, %cst0 {allowTF32 = true, transA = false, transB = false} : tensor<16x16xf16, #shared0> * tensor<16x16xf16, #shared0> -> tensor<16x16xf32, #mma0>
|
||||
%D = tt.dot %AA_DOT, %BB_DOT, %cst0 {allowTF32 = true, transA = false, transB = false} : tensor<16x16xf16, #dot_operand_a> * tensor<16x16xf16, #dot_operand_b> -> tensor<16x16xf32, #mma0>
|
||||
|
||||
return
|
||||
}
|
||||
@@ -813,6 +817,7 @@ module attributes {"triton_gpu.num-warps" = 4 : i32} {
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
#blocked = #triton_gpu.blocked<{sizePerThread = [1, 4], threadsPerWarp = [2, 16], warpsPerCTA = [1, 4], order = [1, 0]}>
|
||||
#shared = #triton_gpu.shared<{vec = 1, perPhase = 1, maxPhase = 1, order = [1, 0]}>
|
||||
#mma = #triton_gpu.mma<{version = 2, warpsPerCTA = [2, 2]}>
|
||||
@@ -821,12 +826,12 @@ module attributes {"triton_gpu.num-warps" = 4 : i32} {
|
||||
module attributes {"triton_gpu.num-warps" = 4 : i32} {
|
||||
func @matmul_fmadot(%ptr:!tt.ptr<f32> {tt.divisibility = 16 : i32},
|
||||
%a:tensor<32x16xf32, #shared>, %b:tensor<16x32xf32, #shared>) {
|
||||
%cst = arith.constant dense<0.000000e+00> : tensor<32x32xf32, #blocked>
|
||||
// CHECK: llvm.intr.fmuladd
|
||||
%28 = tt.dot %a, %b, %cst {allowTF32 = false, transA = false, transB = false} : tensor<32x16xf32, #shared> * tensor<16x32xf32, #shared> -> tensor<32x32xf32, #blocked>
|
||||
%30 = tt.splat %ptr : (!tt.ptr<f32>) -> tensor<32x1x!tt.ptr<f32>, #blocked>
|
||||
%36 = tt.broadcast %30 : (tensor<32x1x!tt.ptr<f32>, #blocked>) -> tensor<32x32x!tt.ptr<f32>, #blocked>
|
||||
tt.store %36, %28 : tensor<32x32xf32, #blocked>
|
||||
// We are going to completely depracate using shared layout for operands of dot
|
||||
//%cst = arith.constant dense<0.000000e+00> : tensor<32x32xf32, #blocked>
|
||||
//%28 = tt.dot %a, %b, %cst {allowTF32 = false, transA = false, transB = false} : tensor<32x16xf32, #shared> * tensor<16x32xf32, #shared> -> tensor<32x32xf32, #blocked>
|
||||
//%30 = tt.splat %ptr : (!tt.ptr<f32>) -> tensor<32x1x!tt.ptr<f32>, #blocked>
|
||||
//%36 = tt.broadcast %30 : (tensor<32x1x!tt.ptr<f32>, #blocked>) -> tensor<32x32x!tt.ptr<f32>, #blocked>
|
||||
//tt.store %36, %28 : tensor<32x32xf32, #blocked>
|
||||
return
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user