[BACKEND] Fix some bugs (atomics, a segfault...) (#577)

This should fix #558 , #573 and #574
This commit is contained in:
Philippe Tillet
2022-07-06 20:03:04 -07:00
committed by GitHub
parent 22105bc33b
commit 4a399a7e40
4 changed files with 73 additions and 50 deletions

View File

@@ -1285,13 +1285,35 @@ void generator::visit_atomic_rmw_inst(ir::atomic_rmw_inst *atom) {
// vector size // vector size
int vec = 1; int vec = 1;
Value *mask = builder_->getInt1(true);
if(atom->get_type()->is_block_ty()){ if(atom->get_type()->is_block_ty()){
auto shape = atom->get_type()->get_block_shapes();
int ld = ords_.at(ptr)[0]; int ld = ords_.at(ptr)[0];
unsigned alignment = alignment_->get(ptr, ld); unsigned alignment = alignment_->get(ptr, ld);
vec = std::min<int>(layouts_->get(ptr)->to_scanline()->nts(ld), alignment); vec = std::min<int>(layouts_->get(ptr)->to_scanline()->nts(ld), alignment);
vec = std::min(vec, val->get_type()->get_tile_element_ty()->is_fp16_ty() ? 2 : 1); vec = std::min(vec, val->get_type()->get_tile_element_ty()->is_fp16_ty() ? 2 : 1);
// mask out inactive threads
analysis::data_layout* layout = layouts_->get(val);
auto curr_axes = a_axes_->get(val);
auto layt_axes = layout->get_axes();
for(unsigned k = 0; k < layt_axes.size(); k++){
unsigned ax = layt_axes.at(k);
distributed_axis dax = axes_.at(ax);
// axis is part of the original layout: thread id should be 0
// but not the current layout
if(std::find(curr_axes.begin(), curr_axes.end(), ax) == curr_axes.end())
mask = and_(mask, icmp_eq(dax.thread_id, i32(0)));
}
// last axis may spillover
Value *thread_id = tgt_->get_local_id(mod_, *builder_, 0);
int per_thread = 1;
for(int ax: layt_axes) { per_thread *= axes_.at(ax).contiguous; }
int numel = 1;
for(int s: layout->get_shape()) { numel *= s; }
mask = and_(mask, icmp_ult(mul(thread_id, i32(per_thread)), i32(numel)));
} }
for(int i = 0; i < idxs_.at(val).size(); i += vec){ for(int i = 0; i < idxs_.at(val).size(); i += vec){
auto idx = idxs_[val][i]; auto idx = idxs_[val][i];
Value *rmw_val = UndefValue::get(vec_ty(vals_[val][idx]->getType(), vec)); Value *rmw_val = UndefValue::get(vec_ty(vals_[val][idx]->getType(), vec));
@@ -1299,6 +1321,7 @@ void generator::visit_atomic_rmw_inst(ir::atomic_rmw_inst *atom) {
rmw_val = insert_elt(rmw_val, vals_[val][idxs_[val][i+ii]], ii); rmw_val = insert_elt(rmw_val, vals_[val][idxs_[val][i+ii]], ii);
Value *rmw_ptr = vals_[ptr][idx]; Value *rmw_ptr = vals_[ptr][idx];
Value *rmw_msk = vals_[msk][idx]; Value *rmw_msk = vals_[msk][idx];
rmw_msk = and_(rmw_msk, mask);
if(vec == 1) if(vec == 1)
rmw_val = extract_elt(rmw_val, i32(0)); rmw_val = extract_elt(rmw_val, i32(0));
Type* ty = rmw_val->getType(); Type* ty = rmw_val->getType();
@@ -3400,20 +3423,20 @@ void generator::visit_layout_mma(analysis::mma_layout* layout) {
} }
void generator::visit_layout_scanline(analysis::scanline_layout* layout) { void generator::visit_layout_scanline(analysis::scanline_layout* layout) {
Value* u_thread_id = tgt_->get_local_id(mod_, *builder_, 0); Value* thread_id = tgt_->get_local_id(mod_, *builder_, 0);
auto order = layout->get_order(); auto order = layout->get_order();
const auto& shape = layout->get_shape(); const auto& shape = layout->get_shape();
// Delinearize // Delinearize
size_t dim = shape.size(); size_t dim = shape.size();
std::vector<Value*> thread_id(dim); std::vector<Value*> thread_ids(dim);
for(unsigned k = 0; k < dim - 1; k++){ for(unsigned k = 0; k < dim - 1; k++){
Constant *dim_k = i32(layout->mts(order[k])); Constant *dim_k = i32(layout->mts(order[k]));
Value *rem = urem(u_thread_id, dim_k); Value *rem = urem(thread_id, dim_k);
u_thread_id = udiv(u_thread_id, dim_k); thread_id = udiv(thread_id, dim_k);
thread_id[order[k]] = rem; thread_ids[order[k]] = rem;
} }
Constant *dim_k = i32(layout->mts(order[dim - 1])); Constant *dim_k = i32(layout->mts(order[dim - 1]));
thread_id[order[dim - 1]] = urem(u_thread_id, dim_k); thread_ids[order[dim - 1]] = urem(thread_id, dim_k);
// Create axes // Create axes
for(unsigned k = 0; k < dim; k++) { for(unsigned k = 0; k < dim; k++) {
@@ -3421,15 +3444,15 @@ void generator::visit_layout_scanline(analysis::scanline_layout* layout) {
int mts = layout->mts(k); int mts = layout->mts(k);
std::string str_k = std::to_string(k); std::string str_k = std::to_string(k);
Value *contiguous_k = i32(nts); Value *contiguous_k = i32(nts);
Value *scaled_thread_id = mul(thread_id[k], contiguous_k); Value *scaled_thread_ids = mul(thread_ids[k], contiguous_k);
unsigned per_cta = layout->shape_per_cta(k); unsigned per_cta = layout->shape_per_cta(k);
unsigned per_thread = nts * shape[k] / per_cta; unsigned per_thread = nts * shape[k] / per_cta;
std::vector<Value*> idx_list(per_thread); std::vector<Value*> idx_list(per_thread);
for(unsigned n = 0 ; n < per_thread; n++){ for(unsigned n = 0 ; n < per_thread; n++){
unsigned offset = n / nts * per_cta + n % nts; unsigned offset = n / nts * per_cta + n % nts;
idx_list[n] = add(scaled_thread_id, i32(offset), "idx_" + str_k + "_" + std::to_string(n)); idx_list[n] = add(scaled_thread_ids, i32(offset), "idx_" + str_k + "_" + std::to_string(n));
} }
axes_[layout->get_axis(k)] = distributed_axis{nts, idx_list, thread_id[k]}; axes_[layout->get_axis(k)] = distributed_axis{nts, idx_list, thread_ids[k]};
} }
} }

View File

@@ -15,42 +15,6 @@ namespace transform{
coalesce::coalesce(analysis::align* align, analysis::layouts *layouts, bool has_sm80) coalesce::coalesce(analysis::align* align, analysis::layouts *layouts, bool has_sm80)
: align_(align), layout_(layouts), has_sm80_(has_sm80) { } : align_(align), layout_(layouts), has_sm80_(has_sm80) { }
// simplify layout conversions using the following simple rules:
// - cvt_1(cvt_2(x)) if convert1 is the inverse of convert2
// - cvt_1(elementwise(x, y)) = elementwise(convert(x), convert(y))
//ir::value* coalesce::simplify(ir::instruction *inst, ir::builder& builder){
// ir::value* _op = inst->get_operand(0);
// ir::instruction* op = dynamic_cast<ir::instruction*>(_op);
// analysis::mma_layout* mma_in = layout_->get(op) ->to_mma();
// analysis::mma_layout* mma_out = layout_->get(inst)->to_mma();
// std::cout << 1 << std::endl;
// // i must be layout conversion instruction
// if(!mma_in && !mma_out)
// return inst;
// // - cvt_1(cvt_2(x)) if convert1 is the inverse of convert2
// bool is_op_cvt = op->get_id() == ir::INST_CVT_LAYOUT;
// if((mma_in || mma_out) && is_op_cvt &&
// (layout_->get(inst) == layout_->get(op->get_operand(0))))
// return op->get_operand(0);
// // - cvt_1(elementwise(x, y)) = elementwise(cvt_1(x), cvt_2(y))
// if(op->get_id() != ir::INST_BINOP && op->get_id() != ir::INST_GETELEMENTPTR)
// return inst;
// std::cout << 1 << std::endl;
// for(size_t i = 0; i < op->get_num_operands(); i++){
// ir::value* arg_i = op->get_operand(i);
// builder.set_insert_point(op);
// // create new layout transform
// ir::instruction* new_arg_i = inst->clone();
// builder.insert(new_arg_i);
// // set the right args
// new_arg_i->replace_uses_of_with(new_arg_i->get_operand(0), arg_i);
// op->replace_uses_of_with(arg_i, simplify(new_arg_i, builder));
// }
// std::cout << 2 << std::endl;
// return op;
//}
void coalesce::run(ir::module &mod) { void coalesce::run(ir::module &mod) {
std::set<analysis::data_layout*> invalidated; std::set<analysis::data_layout*> invalidated;
ir::builder& builder = mod.get_builder(); ir::builder& builder = mod.get_builder();
@@ -62,7 +26,7 @@ void coalesce::run(ir::module &mod) {
if(dynamic_cast<ir::store_inst*>(i) || dynamic_cast<ir::atomic_rmw_inst*>(i)) if(dynamic_cast<ir::store_inst*>(i) || dynamic_cast<ir::atomic_rmw_inst*>(i))
if(ir::value* op = i->get_operand(1)) if(ir::value* op = i->get_operand(1))
if(op->get_type()->is_block_ty()) if(op->get_type()->is_block_ty())
if(op->get_type()->get_tile_rank() == 2) if(op->get_type()->get_tile_ranks1() == 2)
if(invalidated.find(layout_->get(op)) == invalidated.end()) if(invalidated.find(layout_->get(op)) == invalidated.end())
if(layout_->get(op)->to_mma()) if(layout_->get(op)->to_mma())
if(dynamic_cast<ir::io_inst*>(i)->get_eviction_policy()==ir::io_inst::NORMAL){ if(dynamic_cast<ir::io_inst*>(i)->get_eviction_policy()==ir::io_inst::NORMAL){
@@ -78,7 +42,7 @@ void coalesce::run(ir::module &mod) {
if(dynamic_cast<ir::copy_to_shared_inst*>(i) || dynamic_cast<ir::reduce_inst*>(i)) if(dynamic_cast<ir::copy_to_shared_inst*>(i) || dynamic_cast<ir::reduce_inst*>(i))
if(ir::value* op = i->get_operand(0)) if(ir::value* op = i->get_operand(0))
if(op->get_type()->is_block_ty()) if(op->get_type()->is_block_ty())
if(op->get_type()->get_tile_rank() == 2) if(op->get_type()->get_tile_ranks1() == 2)
if(invalidated.find(layout_->get(op)) == invalidated.end()) if(invalidated.find(layout_->get(op)) == invalidated.end())
if(layout_->get(op)->to_mma()){ if(layout_->get(op)->to_mma()){
ir::instruction* new_op = ir::cvt_layout_inst::create(op); ir::instruction* new_op = ir::cvt_layout_inst::create(op);
@@ -91,7 +55,7 @@ void coalesce::run(ir::module &mod) {
// uncoalesce after load // uncoalesce after load
if(auto x = dynamic_cast<ir::load_inst*>(i)) if(auto x = dynamic_cast<ir::load_inst*>(i))
if(x->get_type()->is_block_ty()) if(x->get_type()->is_block_ty())
if(x->get_type()->get_tile_rank()==2) if(x->get_type()->get_tile_ranks1()==2)
if(layout_->get(x)->to_mma()) if(layout_->get(x)->to_mma())
if(!has_sm80_ || dynamic_cast<ir::io_inst*>(i)->get_eviction_policy()==ir::io_inst::NORMAL){ if(!has_sm80_ || dynamic_cast<ir::io_inst*>(i)->get_eviction_policy()==ir::io_inst::NORMAL){
builder.set_insert_point_after(x); builder.set_insert_point_after(x);
@@ -111,9 +75,11 @@ void coalesce::run(ir::module &mod) {
auto out_contig = align_->contiguous(ptr); auto out_contig = align_->contiguous(ptr);
auto val_inst = dynamic_cast<ir::instruction*>(val); auto val_inst = dynamic_cast<ir::instruction*>(val);
if(!val_inst) if(!val_inst)
break; continue;
if(dynamic_cast<ir::cvt_layout_inst*>(val)) if(dynamic_cast<ir::cvt_layout_inst*>(val))
break; continue;
if(!val->get_type()->is_block_ty() || val->get_type()->get_tile_ranks1()==1)
continue;
std::vector<unsigned> in_contig; std::vector<unsigned> in_contig;
std::vector<ir::instruction*> queue = {val_inst}; std::vector<ir::instruction*> queue = {val_inst};
std::set<ir::instruction*> seen; std::set<ir::instruction*> seen;

View File

@@ -532,6 +532,29 @@ def test_atomic_rmw(op, dtype_x_str, mode, device='cuda'):
np.testing.assert_allclose(z_ref, to_numpy(z_tri), rtol=0.01) np.testing.assert_allclose(z_ref, to_numpy(z_tri), rtol=0.01)
@pytest.mark.parametrize("axis", [0, 1])
def test_tensor_atomic_rmw(axis, device="cuda"):
shape0, shape1 = 8, 8
# triton kernel
@triton.jit
def kernel(Z, X, AXIS: tl.constexpr, SHAPE0: tl.constexpr, SHAPE1: tl.constexpr):
off0 = tl.arange(0, SHAPE0)
off1 = tl.arange(0, SHAPE1)
x = tl.load(X + off0[:, None] * SHAPE1 + off1[None, :])
z = tl.sum(x, axis=AXIS)
tl.atomic_add(Z + off0, z)
rs = RandomState(17)
x = numpy_random((shape0, shape1), dtype_str="float32", rs=rs)
# reference result
z_ref = np.sum(x, axis=axis)
# triton result
x_tri = to_triton(x, device=device)
z_tri = to_triton(np.zeros((shape0,), dtype="float32"), device=device)
kernel[(1,)](z_tri, x_tri, axis, shape0, shape1)
np.testing.assert_allclose(z_ref, to_numpy(z_tri), rtol=1e-4)
def test_atomic_cas(): def test_atomic_cas():
# 1. make sure that atomic_cas changes the original value (Lock) # 1. make sure that atomic_cas changes the original value (Lock)
@triton.jit @triton.jit

View File

@@ -370,6 +370,17 @@ class constexpr:
def __call__(self, *args, **kwds): def __call__(self, *args, **kwds):
return self.value(*args, **kwds) return self.value(*args, **kwds)
def to(self, dtype, bitcast=False, _builder=None):
if dtype in [float8, float16, bfloat16]:
raise ValueError("floating point constexpr must be float64")
if dtype.is_int():
ret_ty = int
elif dtype.is_bool():
ret_ty = bool
elif dtype.is_floating():
ret_ty = float
return constexpr(ret_ty(self.value))
class tensor: class tensor:
# infer dtype from ir type # infer dtype from ir type