[Triton-MLIR][BACKEND] Support $c from mma layout in dot (#798)

This PR does

1. Support the case where $c holding a mma layout, this should be useful
in forloop in k-axis in GEMM
2. Fix the `unrealized_conversion_cast` in ConvertLayout[shared->dot_op]

Known issue

1. There is some IO conflict in GEMM with a k-forloop, it is temporarily
solved by [adding a
barrier](https://github.com/openai/triton/pull/798/files#diff-8a9a5a7f4a025fb1299af29d190d5626bd9000406d3ea47c49679272d3d6abe9R3028)
in dot conversion, but we are still working on it, will get a more
generic fix for it in the following PR.
2. The parallel pass will result in a buggy instruction result type
```mlir
%1049 = llvm.inline_asm has_side_effects asm_dialect = att operand_attrs = [] "cp.async.commit_group ;", ""  : () -> !llvm.void
%1050 = builtin.unrealized_conversion_cast %1049 : !llvm.void to !llvm.ptr<f16, 3>
```
So we temporarily disable it.
This commit is contained in:
Yan Chunwei
2022-10-26 10:33:04 +08:00
committed by GitHub
parent a2cbe7af91
commit 4dc2396ca0
3 changed files with 226 additions and 64 deletions

View File

@@ -35,6 +35,9 @@ def matmul_no_scf_kernel(
[256, 128, 16, 4],
[128, 16, 32, 4],
[32, 128, 64, 4],
[128, 128, 64, 4],
[64, 128, 128, 4],
[64, 128, 128, 2],
])
def test_gemm_no_scf(SIZE_M, SIZE_N, SIZE_K, NUM_WARPS):
a = torch.randn((SIZE_M, SIZE_K), device='cuda', dtype=torch.float16)
@@ -78,24 +81,39 @@ def matmul_kernel(
tl.store(c_ptrs, accumulator)
# TODO: DotConversion in TritonGPUToLLVM cannot support non-splat C for the moment
# @pytest.mark.parametrize('SIZE_M,SIZE_N,SIZE_K,NUM_WARPS,BLOCK_SIZE_M,BLOCK_SIZE_N,BLOCK_SIZE_K', [
# [128, 256, 128, 4, 128, 256, 32],
# # [256, 128, 64, 4, 256, 128, 16],
# # [128, 16, 128, 4, 128, 16, 32],
# # [32, 128, 256, 4, 32, 128, 64],
# ])
# def test_gemm(SIZE_M, SIZE_N, SIZE_K, NUM_WARPS, BLOCK_SIZE_M, BLOCK_SIZE_N, BLOCK_SIZE_K):
# a = torch.randn((SIZE_M, SIZE_K), device='cuda', dtype=torch.float16)
# b = torch.randn((SIZE_K, SIZE_N), device='cuda', dtype=torch.float16)
# c = torch.empty((SIZE_M, SIZE_N), device=a.device, dtype=torch.float32)
# grid = lambda META: (1, )
# matmul_kernel[grid](a_ptr=a, b_ptr=b, c_ptr=c,
# stride_am=a.stride(0), stride_ak=a.stride(1),
# stride_bk=b.stride(0), stride_bn=b.stride(1),
# stride_cm=c.stride(0), stride_cn=c.stride(1),
# M=a.shape[0], N=b.shape[1], K=a.shape[1],
# BLOCK_SIZE_M=BLOCK_SIZE_M, BLOCK_SIZE_N=BLOCK_SIZE_N, BLOCK_SIZE_K=BLOCK_SIZE_K,
# num_warps=NUM_WARPS)
# golden = torch.matmul(a, b)
# torch.set_printoptions(profile="full")
# assert_close(c, golden, rtol=1e-3, atol=1e-3, check_dtype=False)
@pytest.mark.parametrize('SIZE_M,SIZE_N,SIZE_K,NUM_WARPS,BLOCK_SIZE_M,BLOCK_SIZE_N,BLOCK_SIZE_K', [
# Non-forloop
[64, 32, 64, 4, 64, 32, 64],
[128, 64, 128, 4, 128, 64, 128],
# K-Forloop
[64, 32, 128, 4, 64, 32, 64],
[128, 16, 128, 4, 128, 16, 32],
[32, 16, 128, 4, 32, 16, 32],
[32, 64, 128, 4, 32, 64, 32],
[32, 128, 256, 4, 32, 128, 64],
[64, 128, 64, 4, 64, 128, 32],
[128, 128, 64, 4, 128, 128, 32],
[64, 64, 128, 4, 64, 64, 32],
[128, 128, 128, 4, 128, 128, 32],
[128, 128, 256, 4, 128, 128, 64],
[128, 256, 128, 4, 128, 256, 32],
[256, 128, 64, 4, 256, 128, 16],
[128, 64, 128, 4, 128, 64, 32],
])
def test_gemm(SIZE_M, SIZE_N, SIZE_K, NUM_WARPS, BLOCK_SIZE_M, BLOCK_SIZE_N, BLOCK_SIZE_K):
a = torch.randn((SIZE_M, SIZE_K), device='cuda', dtype=torch.float16)
b = torch.randn((SIZE_K, SIZE_N), device='cuda', dtype=torch.float16)
c = torch.empty((SIZE_M, SIZE_N), device=a.device, dtype=torch.float32)
grid = lambda META: (1, )
matmul_kernel[grid](a_ptr=a, b_ptr=b, c_ptr=c,
stride_am=a.stride(0), stride_ak=a.stride(1),
stride_bk=b.stride(0), stride_bn=b.stride(1),
stride_cm=c.stride(0), stride_cn=c.stride(1),
M=a.shape[0], N=b.shape[1], K=a.shape[1],
BLOCK_SIZE_M=BLOCK_SIZE_M, BLOCK_SIZE_N=BLOCK_SIZE_N, BLOCK_SIZE_K=BLOCK_SIZE_K,
num_warps=NUM_WARPS)
golden = torch.matmul(a, b)
torch.set_printoptions(profile="full")
assert_close(c, golden, rtol=1e-3, atol=1e-3, check_dtype=False)