[DOCS] Improve readability of 02-fused-softmax.py (#186)
This commit is contained in:
@@ -1,7 +1,9 @@
|
|||||||
"""
|
"""
|
||||||
Fused Softmax
|
Fused Softmax
|
||||||
=================
|
=================
|
||||||
In this tutorial, you will write a fused softmax operation that is significantly faster than PyTorch's native op for a particular class of matrices: those whose rows can fit in the GPU's SRAM.
|
In this tutorial, you will write a fused softmax operation that is significantly faster
|
||||||
|
than PyTorch's native op for a particular class of matrices: those whose rows can fit in
|
||||||
|
the GPU's SRAM.
|
||||||
You will learn about:
|
You will learn about:
|
||||||
|
|
||||||
- The benefits of kernel fusion for bandwidth-bound operations.
|
- The benefits of kernel fusion for bandwidth-bound operations.
|
||||||
@@ -17,9 +19,13 @@ You will learn about:
|
|||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
|
||||||
# Compute the row-wise softmax of x
|
|
||||||
@torch.jit.script
|
@torch.jit.script
|
||||||
def naive_softmax(x):
|
def naive_softmax(x):
|
||||||
|
"""Compute row-wise softmax of X using native pytorch
|
||||||
|
|
||||||
|
We subtract the maximum element in order to avoid overflows. Softmax is invariant to
|
||||||
|
this shift.
|
||||||
|
"""
|
||||||
# read MN elements ; write M elements
|
# read MN elements ; write M elements
|
||||||
x_max = x.max(dim=1)[0]
|
x_max = x.max(dim=1)[0]
|
||||||
# read 2MN elements ; write MN elements
|
# read 2MN elements ; write MN elements
|
||||||
@@ -35,43 +41,54 @@ def naive_softmax(x):
|
|||||||
|
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
# When implemented naively in pytorch, computing :code:`y = naive_softmax(x)` for :math:`x \in R^{M \times N}` requires reading :math:`7MN` elements from DRAM and writing back :math:`3MN + 2M` elements.
|
# When implemented naively in PyTorch, computing :code:`y = naive_softmax(x)` for :math:`x \in R^{M \times N}`
|
||||||
# This is obviously wasteful; we'd prefer to have a custom "fused" kernel that only reads X once and does all the necessary computations on-chip.
|
# requires reading :math:`7MN` elements from DRAM and writing back :math:`3MN + 2M` elements.
|
||||||
# Doing so would require reading and writing back only :math:`MN` bytes, so we could expect a theoretical speed-up of ~5x (i.e., :math:`(10MN + 2M) / 2MN`).
|
# This is obviously wasteful; we'd prefer to have a custom "fused" kernel that only reads
|
||||||
# The `torch.jit.script` flags aims to perform this kind of "kernel fusion" automatically but, as we will see later, it is still far from ideal.
|
# X once and does all the necessary computations on-chip.
|
||||||
|
# Doing so would require reading and writing back only :math:`MN` bytes, so we could
|
||||||
|
# expect a theoretical speed-up of ~5x (i.e., :math:`(10MN + 2M) / 2MN`).
|
||||||
|
# The `torch.jit.script` flags aims to perform this kind of "kernel fusion" automatically
|
||||||
|
# but, as we will see later, it is still far from ideal.
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
# Compute Kernel
|
# Compute Kernel
|
||||||
# ----------------
|
# ----------------
|
||||||
# Our softmax kernel works as follows: each program loads a row of the input matrix X, normalizes it and writes back the result to the output Y.
|
# Our softmax kernel works as follows: each program loads a row of the input matrix X,
|
||||||
# Note that one important limitation of Triton is that each block must have a power-of-two number of elements,
|
# normalizes it and writes back the result to the output Y.
|
||||||
# so we need to internally "pad" each row and guard the memory operations properly if we want to handle any possible input shapes:
|
# Note that one important limitation of Triton is that each block must have a
|
||||||
|
# power-of-two number of elements, so we need to internally "pad" each row and guard the
|
||||||
|
# memory operations properly if we want to handle any possible input shapes:
|
||||||
|
|
||||||
import triton
|
import triton
|
||||||
import triton.language as tl
|
import triton.language as tl
|
||||||
|
|
||||||
|
|
||||||
@triton.jit
|
@triton.jit
|
||||||
def _softmax(Y, X, stride_xm, stride_ym, M, N, **meta):
|
def softmax_kernel(
|
||||||
# row index
|
output_ptr, input_ptr, input_row_stride, output_row_stride, n_cols, **meta
|
||||||
m = tl.program_id(0)
|
):
|
||||||
# col indices
|
# The rows of the softmax are independent, so we parallelize across those
|
||||||
# here BLOCK is the smallest power of two greater than `N`
|
row_idx = tl.program_id(0)
|
||||||
n = tl.arange(0, meta['BLOCK'])
|
BLOCK_SIZE = meta['BLOCK_SIZE']
|
||||||
# the memory address of all the elements
|
# The stride represents how much we need to increase the pointer to advance 1 row
|
||||||
# that we want to load can be computed as follows
|
row_start_ptr = input_ptr + row_idx * input_row_stride
|
||||||
X = X + m * stride_xm + n
|
|
||||||
x = tl.load(X, mask=n < N, other=-float('inf'))
|
# The block size is the next power of two greater than n_cols, so we can fit each
|
||||||
|
# row in a single block
|
||||||
|
col_offsets = tl.arange(0, BLOCK_SIZE)
|
||||||
|
input_ptrs = row_start_ptr + col_offsets
|
||||||
|
# Load the row into SRAM, using a mask since BLOCK_SIZE may be > than n_cols
|
||||||
|
row = tl.load(input_ptrs, mask=col_offsets < n_cols, other=-float('inf'))
|
||||||
# Substract maximum for numerical stability
|
# Substract maximum for numerical stability
|
||||||
z = x - tl.max(x, axis=0)
|
row_minus_max = row - tl.max(row, axis=0)
|
||||||
# Note that exponentials in Triton are fast
|
# Note that exponentials in Triton are fast but approximate (i.e., think __expf in CUDA)
|
||||||
# but approximate (i.e., think __expf in CUDA)
|
numerator = tl.exp(row_minus_max)
|
||||||
num = tl.exp(z)
|
denominator = tl.sum(numerator, axis=0)
|
||||||
denom = tl.sum(num, axis=0)
|
softmax_output = numerator / denominator
|
||||||
y = num / denom
|
# Write back output to DRAM
|
||||||
# Write back to Y
|
output_row_start_ptr = output_ptr + row_idx * output_row_stride
|
||||||
Y = Y + m * stride_ym + n
|
output_ptrs = output_row_start_ptr + col_offsets
|
||||||
tl.store(Y, y, mask=n < N)
|
tl.store(output_ptrs, softmax_output, mask=col_offsets < n_cols)
|
||||||
|
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
@@ -79,6 +96,7 @@ def _softmax(Y, X, stride_xm, stride_ym, M, N, **meta):
|
|||||||
|
|
||||||
|
|
||||||
def next_power_of_2(n):
|
def next_power_of_2(n):
|
||||||
|
"""Return the smallest power of 2 greater than or equal to n"""
|
||||||
n -= 1
|
n -= 1
|
||||||
n |= n >> 1
|
n |= n >> 1
|
||||||
n |= n >> 2
|
n |= n >> 2
|
||||||
@@ -90,20 +108,31 @@ def next_power_of_2(n):
|
|||||||
|
|
||||||
|
|
||||||
def softmax(x):
|
def softmax(x):
|
||||||
M, N = x.shape
|
n_rows, n_cols = x.shape
|
||||||
# The block size is the smallest power of two greater than the number of columns in `x`
|
# The block size is the smallest power of two greater than the number of columns in `x`
|
||||||
BLOCK = next_power_of_2(N)
|
BLOCK_SIZE = next_power_of_2(n_cols)
|
||||||
# Another trick we can use is to ask the compiler to use more threads per row by
|
# Another trick we can use is to ask the compiler to use more threads per row by
|
||||||
# increasing the number of warps (`num_warps`) over which each row is distributed.
|
# increasing the number of warps (`num_warps`) over which each row is distributed.
|
||||||
# You will see in the next tutorial how to auto-tune this value in a more natural
|
# You will see in the next tutorial how to auto-tune this value in a more natural
|
||||||
# way so you don't have to come up with manual heuristics yourself.
|
# way so you don't have to come up with manual heuristics yourself.
|
||||||
num_warps = 4
|
num_warps = 4
|
||||||
if BLOCK >= 2048: num_warps = 8
|
if BLOCK_SIZE >= 2048:
|
||||||
if BLOCK >= 4096: num_warps = 16
|
num_warps = 8
|
||||||
|
if BLOCK_SIZE >= 4096:
|
||||||
|
num_warps = 16
|
||||||
# Allocate output
|
# Allocate output
|
||||||
y = torch.empty_like(x)
|
y = torch.empty_like(x)
|
||||||
# Enqueue kernel. The launch grid is simple: we have one kernel instance per row of the input matrix
|
# Enqueue kernel. The 1D launch grid is simple: we have one kernel instance per row o
|
||||||
_softmax[(M, )](y, x, x.stride(0), y.stride(0), M, N, num_warps=num_warps, BLOCK=BLOCK)
|
# f the input matrix
|
||||||
|
softmax_kernel[(n_rows,)](
|
||||||
|
y,
|
||||||
|
x,
|
||||||
|
x.stride(0),
|
||||||
|
y.stride(0),
|
||||||
|
n_cols,
|
||||||
|
num_warps=num_warps,
|
||||||
|
BLOCK_SIZE=BLOCK_SIZE,
|
||||||
|
)
|
||||||
return y
|
return y
|
||||||
|
|
||||||
|
|
||||||
@@ -117,9 +146,9 @@ def softmax(x):
|
|||||||
|
|
||||||
torch.manual_seed(0)
|
torch.manual_seed(0)
|
||||||
x = torch.randn(1823, 781, device='cuda')
|
x = torch.randn(1823, 781, device='cuda')
|
||||||
y_tri = softmax(x)
|
y_triton = softmax(x)
|
||||||
y_ref = torch.softmax(x, axis=1)
|
y_torch = torch.softmax(x, axis=1)
|
||||||
print(torch.allclose(y_tri, y_ref))
|
print(torch.allclose(y_triton, y_torch))
|
||||||
|
|
||||||
#%%
|
#%%
|
||||||
# As expected, the results are identical.
|
# As expected, the results are identical.
|
||||||
@@ -134,14 +163,24 @@ print(torch.allclose(y_tri, y_ref))
|
|||||||
@triton.testing.perf_report(
|
@triton.testing.perf_report(
|
||||||
triton.testing.Benchmark(
|
triton.testing.Benchmark(
|
||||||
x_names=['N'], # argument names to use as an x-axis for the plot
|
x_names=['N'], # argument names to use as an x-axis for the plot
|
||||||
x_vals=[128 * i for i in range(2, 100)], # different possible values for `x_name`
|
x_vals=[
|
||||||
|
128 * i for i in range(2, 100)
|
||||||
|
], # different possible values for `x_name`
|
||||||
line_arg='provider', # argument name whose value corresponds to a different line in the plot
|
line_arg='provider', # argument name whose value corresponds to a different line in the plot
|
||||||
line_vals=['triton', 'torch-native', 'torch-jit'], # possible values for `line_arg``
|
line_vals=[
|
||||||
line_names=["Triton", "Torch (native)", "Torch (jit)"], # label name for the lines
|
'triton',
|
||||||
|
'torch-native',
|
||||||
|
'torch-jit',
|
||||||
|
], # possible values for `line_arg``
|
||||||
|
line_names=[
|
||||||
|
"Triton",
|
||||||
|
"Torch (native)",
|
||||||
|
"Torch (jit)",
|
||||||
|
], # label name for the lines
|
||||||
styles=[('blue', '-'), ('green', '-'), ('green', '--')], # line styles
|
styles=[('blue', '-'), ('green', '-'), ('green', '--')], # line styles
|
||||||
ylabel="GB/s", # label name for the y-axis
|
ylabel="GB/s", # label name for the y-axis
|
||||||
plot_name="softmax-performance", # name for the plot. Used also as a file name for saving the plot.
|
plot_name="softmax-performance", # name for the plot. Used also as a file name for saving the plot.
|
||||||
args={'M': 4096} # values for function arguments not in `x_names` and `y_name`
|
args={'M': 4096}, # values for function arguments not in `x_names` and `y_name`
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
def benchmark(M, N, provider):
|
def benchmark(M, N, provider):
|
||||||
|
Reference in New Issue
Block a user