[DOCS] Improved plots in tutorials
This commit is contained in:
@@ -40,14 +40,29 @@ def allclose(x, y):
|
||||
return err < tol
|
||||
|
||||
|
||||
def do_bench(fn, warmup=10, rep=50, grad_to_none=None):
|
||||
def do_bench(fn, warmup=50, rep=50, grad_to_none=None, percentiles=[0.2, 0.8]):
|
||||
# Estimate the runtime of the function
|
||||
fn()
|
||||
torch.cuda.synchronize()
|
||||
start_event = torch.cuda.Event(enable_timing=True)
|
||||
end_event = torch.cuda.Event(enable_timing=True)
|
||||
start_event.record()
|
||||
for _ in range(5):
|
||||
fn()
|
||||
end_event.record()
|
||||
torch.cuda.synchronize()
|
||||
estimate_ms = start_event.elapsed_time(end_event) / 5
|
||||
# We maintain a buffer of 256 MB that we clear
|
||||
# before each kernel call to make sure that the L2
|
||||
# doesn't contain any input data before the run
|
||||
start_event = [torch.cuda.Event(enable_timing=True) for i in range(rep)]
|
||||
end_event = [torch.cuda.Event(enable_timing=True) for i in range(rep)]
|
||||
cache = torch.empty(int(256e6), dtype=torch.int8, device='cuda')
|
||||
for i in range(warmup + rep):
|
||||
# Warm-up
|
||||
for _ in range(int(warmup / estimate_ms)):
|
||||
fn()
|
||||
# Benchmark
|
||||
for i in range(rep):
|
||||
# we don't want `fn` to accumulate gradient values
|
||||
# if it contains a backward pass. So we clear the
|
||||
# provided gradients
|
||||
@@ -56,29 +71,41 @@ def do_bench(fn, warmup=10, rep=50, grad_to_none=None):
|
||||
# we clear the L2 cache before each run
|
||||
cache.zero_()
|
||||
# record time of `fn`
|
||||
if i >= warmup:
|
||||
start_event[i - warmup].record()
|
||||
start_event[i].record()
|
||||
fn()
|
||||
if i >= warmup:
|
||||
end_event[i - warmup].record()
|
||||
end_event[i].record()
|
||||
torch.cuda.synchronize()
|
||||
times = torch.tensor([s.elapsed_time(e) for s, e in zip(start_event, end_event)])
|
||||
q = torch.quantile(times, torch.tensor([0.1, 0.5, 0.9]))
|
||||
min_ms = q[0].item()
|
||||
mean_ms = q[1].item()
|
||||
max_ms = q[2].item()
|
||||
return mean_ms, min_ms, max_ms
|
||||
percentiles = torch.quantile(times, torch.tensor(percentiles)).tolist()
|
||||
med_ms = torch.median(times).item()
|
||||
if percentiles:
|
||||
return tuple([med_ms] + percentiles)
|
||||
else:
|
||||
return med_ms
|
||||
|
||||
|
||||
class Benchmark:
|
||||
def __init__(self, x_names, x_vals, y_name, y_vals, y_lines, ylabel, loglog, plot_name, args):
|
||||
def __init__(
|
||||
self,
|
||||
x_names,
|
||||
x_vals,
|
||||
y_name,
|
||||
y_vals,
|
||||
y_lines,
|
||||
ylabel,
|
||||
plot_name,
|
||||
args,
|
||||
x_log=False,
|
||||
y_log=False,
|
||||
):
|
||||
self.x_names = x_names
|
||||
self.x_vals = x_vals
|
||||
self.x_log = x_log
|
||||
self.y_name = y_name
|
||||
self.y_vals = y_vals
|
||||
self.y_lines = y_lines
|
||||
self.y_log = y_log
|
||||
self.ylabel = ylabel
|
||||
self.loglog = loglog
|
||||
self.plot_name = plot_name
|
||||
self.args = args
|
||||
|
||||
@@ -88,7 +115,7 @@ class Mark:
|
||||
self.fn = fn
|
||||
self.benchmarks = benchmarks
|
||||
|
||||
def _run(self, bench, result_path, with_plot):
|
||||
def _run(self, bench, save_path, show_plots):
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
import os
|
||||
@@ -109,7 +136,7 @@ class Mark:
|
||||
row_min += [y_min]
|
||||
row_max += [y_max]
|
||||
df.loc[len(df)] = [x] + row_mean + row_min + row_max
|
||||
if with_plot and bench.plot_name:
|
||||
if bench.plot_name:
|
||||
plt.figure()
|
||||
ax = plt.subplot()
|
||||
xlabel = " = ".join(bench.x_names)
|
||||
@@ -123,18 +150,27 @@ class Mark:
|
||||
ax.set_xlabel(xlabel)
|
||||
ax.set_ylabel(bench.ylabel)
|
||||
ax.set_title(bench.plot_name)
|
||||
ax.set_xscale("log" if bench.loglog else "linear")
|
||||
ax.set_yscale("log" if bench.loglog else "linear")
|
||||
plt.savefig(os.path.join(result_path, f"{bench.plot_name}.png"))
|
||||
df = df[[bench.x_names[0]] + bench.y_lines]
|
||||
df.to_csv(os.path.join(result_path, f"{bench.plot_name}.csv"), float_format='%.1f', index=False)
|
||||
ax.set_xscale("log" if bench.x_log else "linear")
|
||||
ax.set_yscale("log" if bench.y_log else "linear")
|
||||
if show_plots:
|
||||
plt.show()
|
||||
if save_path:
|
||||
plt.savefig(os.path.join(save_path, f"{bench.plot_name}.png"))
|
||||
if save_path:
|
||||
df = df[[bench.x_names[0]] + bench.y_lines]
|
||||
df.to_csv(os.path.join(save_path, f"{bench.plot_name}.csv"), float_format='%.1f', index=False)
|
||||
|
||||
def run(self, result_path, with_plot):
|
||||
with open(os.path.join(result_path, "results.html"), "w") as html:
|
||||
def run(self, show_plots=False, save_path=''):
|
||||
has_single_bench = isinstance(self.benchmarks, Benchmark)
|
||||
benchmarks = [self.benchmarks] if has_single_bench else self.benchmarks
|
||||
if save_path:
|
||||
html = open(os.path.join(save_path, "results.html"), "w")
|
||||
html.write("<html><body>\n")
|
||||
for bench in self.benchmarks:
|
||||
self._run(bench, result_path, with_plot)
|
||||
for bench in benchmarks:
|
||||
self._run(bench, save_path, show_plots)
|
||||
if save_path:
|
||||
html.write(f"<image src=\"{bench.plot_name}.png\"/>\n")
|
||||
if save_path:
|
||||
html.write("</body></html>\n")
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user