[examples/python] added framework code for shift-conv

This commit is contained in:
Philippe Tillet
2019-07-02 20:45:10 -07:00
parent 8fc253946c
commit 5144dc3a6c
3 changed files with 135 additions and 5 deletions

View File

@@ -0,0 +1,111 @@
#include <iostream>
#include "triton/driver/buffer.h"
#include "triton/driver/backend.h"
#include "triton/driver/stream.h"
#include "triton/runtime/jit.h"
#include "triton/tools/bench.hpp"
#include "triton/dnn/shift.h"
#define EIGEN_USE_GPU
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/shape_inference.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/util/cuda_kernel_helper.h"
#include "tensorflow/core/util/padding.h"
#include "tensorflow/core/util/tensor_format.h"
#include "tensorflow/core/framework/common_shape_fns.h"
using namespace tensorflow;
using GPUDevice = Eigen::GpuDevice;
class ShiftConvOp : public OpKernel {
public:
explicit ShiftConvOp(OpKernelConstruction* context) : OpKernel(context) {
context->GetAttr("shift_h", &h_shift_h_);
context->GetAttr("shift_w", &h_shift_w_);
R_ = 3;
S_ = 3;
}
void ComputeCommon(OpKernelContext* context){
}
void Compute(OpKernelContext* context){
// get device/stream
GPUDevice device = context->eigen_device<GPUDevice>();
triton::driver::cu_stream sstream(device.stream(), false);
triton::driver::context* ctx = sstream.context();
triton::driver::stream* stream = &sstream;
// get inputs
const Tensor& tf_a = context->input(0);
const Tensor& tf_b = context->input(1);
// shapes for a
int64_t Ca = tf_a.dim_size(0);
int64_t H = tf_a.dim_size(1);
int64_t W = tf_a.dim_size(2);
int64_t B = tf_a.dim_size(3);
// shapes for b
int64_t Cb = tf_b.dim_size(0);
int64_t F = tf_b.dim_size(1);
// checks
OP_REQUIRES(context, Ca == Cb, tensorflow::errors::InvalidArgument("operands must have the same number of channels"));
int64_t C = Ca;
// shapes for c
Tensor* tf_c = nullptr;
TensorShape out_shape({Ca, H, W, B});
OP_REQUIRES_OK(context, context->allocate_output(0, out_shape, &tf_c));
// return early if possible
if (out_shape.num_elements() == 0)
return;
// initialize default compute device
triton::jit jit(ctx);
// matrix multiplication parameters
triton::driver::cu_buffer da(ctx, (CUdeviceptr)tf_a.flat<float>().data(), false);
triton::driver::cu_buffer db(ctx, (CUdeviceptr)tf_b.flat<float>().data(), false);
triton::driver::cu_buffer dc(ctx, (CUdeviceptr)tf_c->flat<float>().data(), false);
// shift configuration
int32_t* shift_h_data = h_shift_h_.flat<int32_t>().data();
int32_t* shift_w_data = h_shift_w_.flat<int32_t>().data();
std::vector<int32_t> shift_h(shift_h_data, shift_h_data + C);
std::vector<int32_t> shift_w(shift_w_data, shift_w_data + C);
triton::dnn::shift shift(B, C, 1, H, W, 1, R_, S_, F, shift_h, shift_w, "fp32", "fp32", triton::dnn::shift::FPROP, false);
// benchmark a given matrix multiplication kernel
auto benchmark = [&](triton::driver::kernel* kernel,
triton::jit::launch_information info) {
// launch info
unsigned TM = info.global_range_size[0];
unsigned TN = info.global_range_size[1];
unsigned nthreads = info.num_threads;
shift.init(stream, (triton::driver::cu_module*)kernel->module());
shift.enqueue(stream, kernel, &da, &db, &dc, TM, TN, nthreads);
stream->synchronize();
double ts = triton::tools::bench([&](){ shift.enqueue(stream, kernel, &da, &db, &dc, TM, TN, nthreads); },
[&](){ stream->synchronize(); }, ctx->device());
return shift.get_nflops() / ts * 1e-3;
};
std::ostringstream oss;
shift.src(oss);
std::string src = oss.str();
triton::jit::tune_res_t best = jit.autotune("shift", src.c_str(), benchmark);
}
private:
Tensor h_shift_h_;
Tensor h_shift_w_;
// triton::driver::buffer* d_shift_h_;
// triton::driver::buffer* d_shift_w_;
int R_;
int S_;
};
REGISTER_KERNEL_BUILDER(Name("ShiftConv").Device(DEVICE_GPU), ShiftConvOp);
REGISTER_OP("ShiftConv")
.Input("a: float32")
.Input("b: float32")
.Attr("shift_h: tensor")
.Attr("shift_w: tensor")
.Output("c: float32")
;