This commit is contained in:
Phil Tillet
2022-12-28 13:42:43 -08:00
parent 7aba2a60d6
commit 54ae3e8d6e
7 changed files with 47 additions and 82 deletions

View File

@@ -13,6 +13,8 @@ std::unique_ptr<Pass> createTritonGPUCanonicalizeLoopsPass();
std::unique_ptr<Pass> createTritonGPUCoalescePass(); std::unique_ptr<Pass> createTritonGPUCoalescePass();
std::unique_ptr<Pass> createTritonGPUOptimizeLoadConvertPass();
std::unique_ptr<Pass> createTritonGPUCombineOpsPass(int computeCapability = 80); std::unique_ptr<Pass> createTritonGPUCombineOpsPass(int computeCapability = 80);
std::unique_ptr<Pass> createTritonGPUVerifier(); std::unique_ptr<Pass> createTritonGPUVerifier();

View File

@@ -71,6 +71,19 @@ def TritonGPUCombineOps : Pass<"tritongpu-combine", "mlir::ModuleOp"> {
]; ];
} }
def TritonGPUOptimizeLoadConvert: Pass<"tritongpu-optimize-load-convert", "mlir::ModuleOp"> {
let summary = "Optimize load + convert into insert_slice_async + wait + extract_slice + convert";
let description = "Transform load + convert into insert_slice_async + wait + extract_slice + convert."
"This decreases registers pressure on architecture with direct pathways between DRAM "
"and shared memory";
let constructor = "mlir::createTritonGPUOptimizeLoadConvertPass()";
let dependentDialects = ["mlir::triton::gpu::TritonGPUDialect",
"mlir::triton::TritonDialect"];
}
def TritonGPUCanonicalizeLoops: Pass<"tritongpu-canonicalize-loops", "mlir::ModuleOp"> { def TritonGPUCanonicalizeLoops: Pass<"tritongpu-canonicalize-loops", "mlir::ModuleOp"> {
let summary = "canonicalize scf.ForOp ops"; let summary = "canonicalize scf.ForOp ops";

View File

@@ -8,6 +8,7 @@ add_mlir_dialect_library(TritonGPUTransforms
Combine.cpp Combine.cpp
Pipeline.cpp Pipeline.cpp
Prefetch.cpp Prefetch.cpp
OptimizeLoadConvert.cpp
TritonGPUConversion.cpp TritonGPUConversion.cpp
DEPENDS DEPENDS

View File

@@ -19,7 +19,6 @@
#include <memory> #include <memory>
#define int_attr(num) rewriter.getI64IntegerAttr(num)
using namespace mlir; using namespace mlir;
namespace { namespace {
@@ -1155,60 +1154,6 @@ public:
} }
}; };
class LoadConvertToInsertSlice : public mlir::RewritePattern{
public:
explicit LoadConvertToInsertSlice(mlir::MLIRContext *context)
: mlir::RewritePattern(triton::gpu::ConvertLayoutOp::getOperationName(), 2, context) {}
mlir::LogicalResult
matchAndRewrite(mlir::Operation *op,
mlir::PatternRewriter &rewriter) const override {
auto cvt = cast<triton::gpu::ConvertLayoutOp>(op);
auto origRetType = cvt.getResult().getType().cast<RankedTensorType>();
auto shape = origRetType.getShape();
auto eltType = origRetType.getElementType();
auto dotOpEncoding = origRetType.getEncoding().dyn_cast<triton::gpu::DotOperandEncodingAttr>();
if(!dotOpEncoding){
return failure();
}
auto loadOp = dyn_cast<triton::LoadOp>(*cvt.getOperand().getDefiningOp());
if(!loadOp){
return failure();
}
auto blockedEncoding = loadOp.getType().cast<RankedTensorType>().getEncoding().dyn_cast<triton::gpu::BlockedEncodingAttr>();
if(!blockedEncoding)
return failure();
auto sharedEncoding = triton::gpu::SharedEncodingAttr::get(getContext(), dotOpEncoding, shape,
blockedEncoding.getOrder(), eltType);
auto srcTy = RankedTensorType::get({1, shape[0], shape[1]},
eltType,
sharedEncoding);
auto loadTensor = rewriter.create<triton::gpu::AllocTensorOp>(op->getLoc(), srcTy);
auto newOp = rewriter.create<triton::gpu::InsertSliceAsyncOp>(
op->getLoc(), loadTensor.getType(),
loadOp.ptr(),
loadTensor, rewriter.create<arith::ConstantIntOp>(op->getLoc(), 0, 32),
loadOp.mask(),
loadOp.other(), loadOp.cache(),
loadOp.evict(), loadOp.isVolatile(), /*axis*/ 0);
rewriter.create<triton::gpu::AsyncWaitOp>(op->getLoc(), 0);
auto tmpType = RankedTensorType::get({shape[0], shape[1]}, eltType, sharedEncoding);
auto tmp = rewriter.create<tensor::ExtractSliceOp>(op->getLoc(), tmpType, newOp,
SmallVector<OpFoldResult>{int_attr(0), int_attr(0), int_attr(0)},
SmallVector<OpFoldResult>{int_attr(1),
int_attr(shape[0]),
int_attr(shape[1])},
SmallVector<OpFoldResult>{int_attr(1), int_attr(1), int_attr(1)});
rewriter.replaceOpWithNewOp<triton::gpu::ConvertLayoutOp>(op, origRetType, tmp);
return success();
}
};
class FixupLoop : public mlir::RewritePattern { class FixupLoop : public mlir::RewritePattern {
public: public:
@@ -1280,7 +1225,6 @@ public:
patterns.add<MoveConvertOutOfLoop>(context); patterns.add<MoveConvertOutOfLoop>(context);
patterns.add<MoveConvertOutOfIf>(context); patterns.add<MoveConvertOutOfIf>(context);
patterns.add<BlockedToMMA>(context, computeCapability); patterns.add<BlockedToMMA>(context, computeCapability);
patterns.add<LoadConvertToInsertSlice>(context);
if (applyPatternsAndFoldGreedily(m, std::move(patterns)).failed()) { if (applyPatternsAndFoldGreedily(m, std::move(patterns)).failed()) {
signalPassFailure(); signalPassFailure();

View File

@@ -1339,11 +1339,15 @@ void init_triton_ir(py::module &&m) {
[](mlir::PassManager &self) { [](mlir::PassManager &self) {
self.addPass(mlir::createTritonGPUPrefetchPass()); self.addPass(mlir::createTritonGPUPrefetchPass());
}) })
.def("add_triton_gpu_combine_pass", .def("add_tritongpu_combine_pass",
[](mlir::PassManager &self, int computeCapability) { [](mlir::PassManager &self, int computeCapability) {
self.addPass( self.addPass(
mlir::createTritonGPUCombineOpsPass(computeCapability)); mlir::createTritonGPUCombineOpsPass(computeCapability));
}) })
.def("add_tritongpu_optimize_load_convert_pass",
[](mlir::PassManager &self) {
self.addPass(mlir::createTritonGPUOptimizeLoadConvertPass());
})
.def("add_triton_gpu_to_llvm", .def("add_triton_gpu_to_llvm",
[](mlir::PassManager &self) { [](mlir::PassManager &self) {
self.addPass(mlir::triton::createConvertTritonGPUToLLVMPass()); self.addPass(mlir::triton::createConvertTritonGPUToLLVMPass());

View File

@@ -894,17 +894,18 @@ def ttir_to_ttgir(mod, num_warps, num_stages, compute_capability):
pm.add_coalesce_pass() pm.add_coalesce_pass()
# The combine pass converts blocked layout to mma layout # The combine pass converts blocked layout to mma layout
# for dot ops so that pipeline can get shared memory swizzled correctly. # for dot ops so that pipeline can get shared memory swizzled correctly.
pm.add_triton_gpu_combine_pass(compute_capability) pm.add_tritongpu_combine_pass(compute_capability)
pm.add_tritongpu_pipeline_pass(num_stages) pm.add_tritongpu_pipeline_pass(num_stages)
# Prefetch must be done after pipeline pass because pipeline pass # Prefetch must be done after pipeline pass because pipeline pass
# extracts slices from the original tensor. # extracts slices from the original tensor.
pm.add_tritongpu_prefetch_pass() pm.add_tritongpu_prefetch_pass()
pm.add_canonicalizer_pass() pm.add_canonicalizer_pass()
pm.add_cse_pass() pm.add_cse_pass()
pm.add_triton_gpu_combine_pass(compute_capability) pm.add_tritongpu_combine_pass(compute_capability)
pm.add_licm_pass() pm.add_licm_pass()
pm.add_triton_gpu_combine_pass(compute_capability) pm.add_tritongpu_combine_pass(compute_capability)
pm.add_cse_pass() pm.add_cse_pass()
pm.add_tritongpu_optimize_load_convert_pass()
pm.run(mod) pm.run(mod)
return mod return mod

View File

@@ -191,7 +191,7 @@ def _bwd_kernel(
tl.store(dv_ptrs, dv) tl.store(dv_ptrs, dv)
tl.store(dk_ptrs, dk) tl.store(dk_ptrs, dk)
_fwd_kernel = triton.compile("./flash-attention.ttgir", num_warps=4) # _fwd_kernel = triton.compile("./flash-attention.ttgir", num_warps=4)
empty = torch.empty(128, device="cuda") empty = torch.empty(128, device="cuda")
@@ -210,28 +210,28 @@ class _attention(torch.autograd.Function):
m = torch.empty((q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) m = torch.empty((q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32)
num_warps = 4 if Lk <= 64 else 8 num_warps = 4 if Lk <= 64 else 8
# _fwd_kernel[grid](
# q, k, v, sm_scale,
# L, m,
# o,
# q.stride(0), q.stride(1), q.stride(2), q.stride(3),
# k.stride(0), k.stride(1), k.stride(2), k.stride(3),
# v.stride(0), v.stride(1), v.stride(2), v.stride(3),
# o.stride(0), o.stride(1), o.stride(2), o.stride(3),
# q.shape[0], q.shape[1], q.shape[2],
# BLOCK_M=BLOCK, BLOCK_N=BLOCK,
# BLOCK_DMODEL=Lk, num_warps=num_warps,
# num_stages=1,
# )
_fwd_kernel[grid]( _fwd_kernel[grid](
q.data_ptr(), k.data_ptr(), v.data_ptr(), sm_scale, q, k, v, sm_scale,
L.data_ptr(), m.data_ptr(), L, m,
o.data_ptr(), o,
q.stride(0), q.stride(1), q.stride(2), q.stride(0), q.stride(1), q.stride(2), q.stride(3),
k.stride(0), k.stride(1), k.stride(2), k.stride(0), k.stride(1), k.stride(2), k.stride(3),
v.stride(0), v.stride(1), v.stride(2), v.stride(0), v.stride(1), v.stride(2), v.stride(3),
o.stride(0), o.stride(1), o.stride(2), o.stride(0), o.stride(1), o.stride(2), o.stride(3),
q.shape[0], q.shape[1], q.shape[2]) q.shape[0], q.shape[1], q.shape[2],
BLOCK_M=BLOCK, BLOCK_N=BLOCK,
BLOCK_DMODEL=Lk, num_warps=num_warps,
num_stages=1,
)
# _fwd_kernel[grid](
# q.data_ptr(), k.data_ptr(), v.data_ptr(), sm_scale,
# L.data_ptr(), m.data_ptr(),
# o.data_ptr(),
# q.stride(0), q.stride(1), q.stride(2),
# k.stride(0), k.stride(1), k.stride(2),
# v.stride(0), v.stride(1), v.stride(2),
# o.stride(0), o.stride(1), o.stride(2),
# q.shape[0], q.shape[1], q.shape[2])
ctx.save_for_backward(q, k, v, o, L, m) ctx.save_for_backward(q, k, v, o, L, m)
ctx.BLOCK = BLOCK ctx.BLOCK = BLOCK