[GH-PAGES] Updated website
This commit is contained in:
@@ -324,13 +324,13 @@ for different problem sizes.</p>
|
||||
0 4096.0 9.600000 9.600000
|
||||
1 8192.0 19.200000 19.200000
|
||||
2 16384.0 38.400001 38.400001
|
||||
3 32768.0 63.999998 63.999998
|
||||
3 32768.0 76.800002 76.800002
|
||||
4 65536.0 127.999995 127.999995
|
||||
5 131072.0 219.428568 219.428568
|
||||
6 262144.0 341.333321 384.000001
|
||||
7 524288.0 472.615390 472.615390
|
||||
8 1048576.0 614.400016 614.400016
|
||||
9 2097152.0 722.823517 702.171410
|
||||
9 2097152.0 722.823517 722.823517
|
||||
10 4194304.0 780.190482 780.190482
|
||||
11 8388608.0 812.429770 812.429770
|
||||
12 16777216.0 833.084721 833.084721
|
||||
@@ -339,7 +339,7 @@ for different problem sizes.</p>
|
||||
15 134217728.0 849.737435 850.656574
|
||||
</pre></div>
|
||||
</div>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 46.208 seconds)</p>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 46.226 seconds)</p>
|
||||
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
|
||||
<div class="sphx-glr-download sphx-glr-download-python docutils container">
|
||||
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>
|
||||
|
@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
|
||||
<p class="sphx-glr-script-out">Out:</p>
|
||||
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
|
||||
N Triton Torch (native) Torch (jit)
|
||||
0 256.0 512.000001 546.133347 186.181817
|
||||
0 256.0 512.000001 546.133347 190.511628
|
||||
1 384.0 585.142862 585.142862 151.703707
|
||||
2 512.0 655.360017 585.142849 154.566038
|
||||
2 512.0 655.360017 606.814814 154.566038
|
||||
3 640.0 682.666684 640.000002 160.000000
|
||||
4 768.0 722.823517 664.216187 163.839992
|
||||
.. ... ... ... ...
|
||||
93 12160.0 812.359066 405.755985 198.936606
|
||||
94 12288.0 814.111783 415.222812 199.197579
|
||||
95 12416.0 812.498981 411.722274 198.854847
|
||||
96 12544.0 812.566838 412.971190 199.012395
|
||||
97 12672.0 812.633240 411.679167 199.069228
|
||||
93 12160.0 812.359066 405.755985 198.733401
|
||||
94 12288.0 814.111783 415.661740 198.995960
|
||||
95 12416.0 812.498981 412.149375 198.556711
|
||||
96 12544.0 812.566838 412.546756 198.815254
|
||||
97 12672.0 812.633240 411.888249 198.873965
|
||||
|
||||
[98 rows x 4 columns]
|
||||
</pre></div>
|
||||
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
|
||||
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
|
||||
</ul>
|
||||
</div></blockquote>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 22.726 seconds)</p>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 24.631 seconds)</p>
|
||||
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
|
||||
<div class="sphx-glr-download sphx-glr-download-python docutils container">
|
||||
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>
|
||||
|
@@ -568,8 +568,8 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
|
||||
<p class="sphx-glr-script-out">Out:</p>
|
||||
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
|
||||
M cuBLAS ... Triton Triton (+ LeakyReLU)
|
||||
0 256.0 2.730667 ... 2.978909 2.978909
|
||||
1 384.0 7.372800 ... 8.507077 7.899428
|
||||
0 256.0 2.730667 ... 3.276800 2.978909
|
||||
1 384.0 7.372800 ... 8.507077 8.507077
|
||||
2 512.0 14.563555 ... 16.384000 16.384000
|
||||
3 640.0 22.260869 ... 24.380953 24.380953
|
||||
4 768.0 32.768000 ... 34.028308 34.028308
|
||||
@@ -579,31 +579,31 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
|
||||
8 1280.0 51.200001 ... 56.888887 56.109587
|
||||
9 1408.0 64.138541 ... 67.305878 66.485074
|
||||
10 1536.0 80.430545 ... 79.526831 78.643199
|
||||
11 1664.0 63.372618 ... 62.929456 62.061463
|
||||
11 1664.0 63.372618 ... 62.492442 62.061463
|
||||
12 1792.0 72.983276 ... 72.512412 71.588687
|
||||
13 1920.0 69.467336 ... 70.172588 70.172588
|
||||
13 1920.0 68.776119 ... 70.172588 70.172588
|
||||
14 2048.0 73.908442 ... 76.959706 76.608294
|
||||
15 2176.0 83.500614 ... 86.367588 85.269692
|
||||
16 2304.0 68.446623 ... 77.057651 76.563695
|
||||
17 2432.0 71.305746 ... 84.877538 84.877538
|
||||
15 2176.0 83.155572 ... 85.998493 85.269692
|
||||
16 2304.0 68.251065 ... 77.057651 76.563695
|
||||
17 2432.0 71.305746 ... 85.653855 84.877538
|
||||
18 2560.0 77.833728 ... 81.310171 80.709358
|
||||
19 2688.0 83.552988 ... 89.676257 89.888756
|
||||
20 2816.0 83.074685 ... 83.552120 82.759409
|
||||
21 2944.0 80.640830 ... 81.832567 81.564701
|
||||
22 3072.0 81.825298 ... 89.030036 88.335577
|
||||
23 3200.0 84.432717 ... 95.952022 95.522391
|
||||
24 3328.0 83.419811 ... 83.226931 85.500351
|
||||
25 3456.0 82.266905 ... 91.407671 89.480098
|
||||
26 3584.0 88.152348 ... 94.747514 90.915465
|
||||
27 3712.0 85.091436 ... 88.404730 90.650947
|
||||
28 3840.0 84.809814 ... 91.549669 89.439548
|
||||
29 3968.0 93.148045 ... 89.657558 86.726322
|
||||
30 4096.0 92.563952 ... 90.321484 84.307617
|
||||
19 2688.0 83.552988 ... 89.888756 89.254248
|
||||
20 2816.0 83.873477 ... 83.873477 83.392363
|
||||
21 2944.0 82.509987 ... 82.373605 82.237674
|
||||
22 3072.0 82.301023 ... 88.473602 88.335577
|
||||
23 3200.0 83.989503 ... 95.522391 94.955488
|
||||
24 3328.0 83.130825 ... 84.496824 84.496824
|
||||
25 3456.0 82.604067 ... 88.014813 88.790274
|
||||
26 3584.0 87.551500 ... 93.661869 97.628001
|
||||
27 3712.0 85.748791 ... 91.230455 87.475786
|
||||
28 3840.0 83.402717 ... 90.798032 91.247522
|
||||
29 3968.0 89.921841 ... 86.480463 89.723483
|
||||
30 4096.0 87.609482 ... 87.495257 93.206754
|
||||
|
||||
[31 rows x 5 columns]
|
||||
</pre></div>
|
||||
</div>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 41.235 seconds)</p>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 29.048 seconds)</p>
|
||||
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
|
||||
<div class="sphx-glr-download sphx-glr-download-python docutils container">
|
||||
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>
|
||||
|
@@ -371,7 +371,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
|
||||
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
|
||||
</dd>
|
||||
</dl>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.109 seconds)</p>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.010 seconds)</p>
|
||||
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
|
||||
<div class="sphx-glr-download sphx-glr-download-python docutils container">
|
||||
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>
|
||||
|
@@ -194,36 +194,36 @@ to download the full example code</p>
|
||||
<p class="sphx-glr-script-out">Out:</p>
|
||||
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
|
||||
N Triton Torch Apex
|
||||
0 1024.0 311.088617 98.698793 299.707322
|
||||
1 1536.0 351.085717 135.529409 341.333333
|
||||
2 2048.0 423.724127 161.684218 323.368435
|
||||
3 2560.0 461.954908 183.402991 330.322572
|
||||
4 3072.0 504.986281 191.999993 311.088607
|
||||
5 3584.0 551.384634 207.267476 308.301075
|
||||
6 4096.0 561.737163 220.907859 300.623865
|
||||
7 4608.0 498.162157 232.825259 291.799469
|
||||
8 5120.0 529.655159 242.845844 287.775181
|
||||
9 5632.0 538.517949 242.236559 288.204696
|
||||
10 6144.0 544.118087 250.775512 287.438593
|
||||
11 6656.0 536.053693 254.775119 285.257135
|
||||
12 7168.0 510.480705 251.508762 273.936302
|
||||
13 7680.0 482.513091 262.564106 280.547947
|
||||
14 8192.0 461.521112 266.046015 282.889211
|
||||
15 8704.0 416.958106 263.093202 282.291896
|
||||
16 9216.0 428.651187 271.391419 287.999990
|
||||
17 9728.0 438.033784 280.278512 289.308559
|
||||
18 10240.0 444.412281 285.767451 289.129408
|
||||
19 10752.0 428.651173 246.229020 289.941565
|
||||
20 11264.0 429.786952 245.091565 286.069848
|
||||
21 11776.0 423.724129 249.447482 288.981596
|
||||
22 12288.0 423.116206 253.578674 294.323369
|
||||
23 12800.0 415.696898 253.884294 290.359162
|
||||
24 13312.0 410.652963 251.962147 289.916513
|
||||
25 13824.0 404.112047 256.593977 291.543045
|
||||
26 14336.0 394.568805 251.508762 285.293536
|
||||
27 14848.0 383.586664 257.479779 289.481735
|
||||
28 15360.0 378.480483 259.971797 289.129401
|
||||
29 15872.0 370.552519 260.909579 289.899545
|
||||
0 1024.0 311.088617 97.912354 303.407414
|
||||
1 1536.0 351.085717 134.540150 341.333333
|
||||
2 2048.0 423.724127 160.627450 334.367350
|
||||
3 2560.0 465.454542 181.238943 330.322572
|
||||
4 3072.0 515.580429 192.501302 317.793096
|
||||
5 3584.0 551.384634 208.271186 312.785456
|
||||
6 4096.0 568.231237 220.412561 296.990947
|
||||
7 4608.0 498.162157 232.825259 290.267724
|
||||
8 5120.0 527.381977 242.366855 287.102804
|
||||
9 5632.0 540.671974 243.107920 289.438969
|
||||
10 6144.0 542.117638 248.661056 286.879370
|
||||
11 6656.0 528.953642 256.000009 285.767438
|
||||
12 7168.0 505.976473 260.260201 284.821192
|
||||
13 7680.0 485.052616 262.938666 279.696505
|
||||
14 8192.0 460.440290 266.767970 284.526763
|
||||
15 8704.0 416.127506 267.472468 284.987724
|
||||
16 9216.0 429.483477 271.391419 288.375482
|
||||
17 9728.0 437.213490 280.615388 290.027323
|
||||
18 10240.0 446.836366 286.100109 287.775181
|
||||
19 10752.0 430.079980 246.935876 290.267711
|
||||
20 11264.0 429.786952 245.536784 286.980888
|
||||
21 11776.0 423.089806 249.667843 289.277383
|
||||
22 12288.0 419.504980 254.673582 294.617366
|
||||
23 12800.0 414.016170 253.884294 289.811310
|
||||
24 13312.0 412.242569 252.959629 290.443638
|
||||
25 13824.0 406.588243 257.390218 292.056329
|
||||
26 14336.0 396.387109 255.051144 287.198654
|
||||
27 14848.0 386.498925 257.852379 289.717061
|
||||
28 15360.0 376.547496 257.970599 288.225185
|
||||
29 15872.0 368.046389 261.626369 290.562936
|
||||
</pre></div>
|
||||
</div>
|
||||
<div class="line-block">
|
||||
@@ -477,7 +477,7 @@ to download the full example code</p>
|
||||
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">'.'</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
|
||||
</pre></div>
|
||||
</div>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 13.066 seconds)</p>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 11.999 seconds)</p>
|
||||
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
|
||||
<div class="sphx-glr-download sphx-glr-download-python docutils container">
|
||||
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>
|
||||
|
@@ -174,7 +174,7 @@
|
||||
|
||||
<div class="section" id="computation-times">
|
||||
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline">¶</a></h1>
|
||||
<p><strong>13:03.344</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
|
||||
<p><strong>12:51.914</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
|
||||
<table class="docutils align-default">
|
||||
<colgroup>
|
||||
<col style="width: 85%" />
|
||||
@@ -183,23 +183,23 @@
|
||||
</colgroup>
|
||||
<tbody>
|
||||
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
|
||||
<td><p>05:41.235</p></td>
|
||||
<td><p>05:29.048</p></td>
|
||||
<td><p>0.0 MB</p></td>
|
||||
</tr>
|
||||
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
|
||||
<td><p>03:22.726</p></td>
|
||||
<td><p>03:24.631</p></td>
|
||||
<td><p>0.0 MB</p></td>
|
||||
</tr>
|
||||
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
|
||||
<td><p>02:13.066</p></td>
|
||||
<td><p>02:11.999</p></td>
|
||||
<td><p>0.0 MB</p></td>
|
||||
</tr>
|
||||
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
|
||||
<td><p>01:46.208</p></td>
|
||||
<td><p>01:46.226</p></td>
|
||||
<td><p>0.0 MB</p></td>
|
||||
</tr>
|
||||
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
|
||||
<td><p>00:00.109</p></td>
|
||||
<td><p>00:00.010</p></td>
|
||||
<td><p>0.0 MB</p></td>
|
||||
</tr>
|
||||
</tbody>
|
||||
|
Reference in New Issue
Block a user