[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-05-02 00:42:39 +00:00
parent 0bce260523
commit 567aa8d4fc
158 changed files with 308 additions and 308 deletions

View File

@@ -324,13 +324,13 @@ for different problem sizes.</p>
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 63.999998 63.999998
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 384.000001
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 702.171410
9 2097152.0 722.823517 722.823517
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
@@ -339,7 +339,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 46.208 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 46.226 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 186.181817
0 256.0 512.000001 546.133347 190.511628
1 384.0 585.142862 585.142862 151.703707
2 512.0 655.360017 585.142849 154.566038
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 163.839992
.. ... ... ... ...
93 12160.0 812.359066 405.755985 198.936606
94 12288.0 814.111783 415.222812 199.197579
95 12416.0 812.498981 411.722274 198.854847
96 12544.0 812.566838 412.971190 199.012395
97 12672.0 812.633240 411.679167 199.069228
93 12160.0 812.359066 405.755985 198.733401
94 12288.0 814.111783 415.661740 198.995960
95 12416.0 812.498981 412.149375 198.556711
96 12544.0 812.566838 412.546756 198.815254
97 12672.0 812.633240 411.888249 198.873965
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 22.726 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 24.631 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -568,8 +568,8 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 8.507077 7.899428
0 256.0 2.730667 ... 3.276800 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
@@ -579,31 +579,31 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
8 1280.0 51.200001 ... 56.888887 56.109587
9 1408.0 64.138541 ... 67.305878 66.485074
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 63.372618 ... 62.929456 62.061463
11 1664.0 63.372618 ... 62.492442 62.061463
12 1792.0 72.983276 ... 72.512412 71.588687
13 1920.0 69.467336 ... 70.172588 70.172588
13 1920.0 68.776119 ... 70.172588 70.172588
14 2048.0 73.908442 ... 76.959706 76.608294
15 2176.0 83.500614 ... 86.367588 85.269692
16 2304.0 68.446623 ... 77.057651 76.563695
17 2432.0 71.305746 ... 84.877538 84.877538
15 2176.0 83.155572 ... 85.998493 85.269692
16 2304.0 68.251065 ... 77.057651 76.563695
17 2432.0 71.305746 ... 85.653855 84.877538
18 2560.0 77.833728 ... 81.310171 80.709358
19 2688.0 83.552988 ... 89.676257 89.888756
20 2816.0 83.074685 ... 83.552120 82.759409
21 2944.0 80.640830 ... 81.832567 81.564701
22 3072.0 81.825298 ... 89.030036 88.335577
23 3200.0 84.432717 ... 95.952022 95.522391
24 3328.0 83.419811 ... 83.226931 85.500351
25 3456.0 82.266905 ... 91.407671 89.480098
26 3584.0 88.152348 ... 94.747514 90.915465
27 3712.0 85.091436 ... 88.404730 90.650947
28 3840.0 84.809814 ... 91.549669 89.439548
29 3968.0 93.148045 ... 89.657558 86.726322
30 4096.0 92.563952 ... 90.321484 84.307617
19 2688.0 83.552988 ... 89.888756 89.254248
20 2816.0 83.873477 ... 83.873477 83.392363
21 2944.0 82.509987 ... 82.373605 82.237674
22 3072.0 82.301023 ... 88.473602 88.335577
23 3200.0 83.989503 ... 95.522391 94.955488
24 3328.0 83.130825 ... 84.496824 84.496824
25 3456.0 82.604067 ... 88.014813 88.790274
26 3584.0 87.551500 ... 93.661869 97.628001
27 3712.0 85.748791 ... 91.230455 87.475786
28 3840.0 83.402717 ... 90.798032 91.247522
29 3968.0 89.921841 ... 86.480463 89.723483
30 4096.0 87.609482 ... 87.495257 93.206754
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 41.235 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 29.048 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -371,7 +371,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.109 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.010 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 98.698793 299.707322
1 1536.0 351.085717 135.529409 341.333333
2 2048.0 423.724127 161.684218 323.368435
3 2560.0 461.954908 183.402991 330.322572
4 3072.0 504.986281 191.999993 311.088607
5 3584.0 551.384634 207.267476 308.301075
6 4096.0 561.737163 220.907859 300.623865
7 4608.0 498.162157 232.825259 291.799469
8 5120.0 529.655159 242.845844 287.775181
9 5632.0 538.517949 242.236559 288.204696
10 6144.0 544.118087 250.775512 287.438593
11 6656.0 536.053693 254.775119 285.257135
12 7168.0 510.480705 251.508762 273.936302
13 7680.0 482.513091 262.564106 280.547947
14 8192.0 461.521112 266.046015 282.889211
15 8704.0 416.958106 263.093202 282.291896
16 9216.0 428.651187 271.391419 287.999990
17 9728.0 438.033784 280.278512 289.308559
18 10240.0 444.412281 285.767451 289.129408
19 10752.0 428.651173 246.229020 289.941565
20 11264.0 429.786952 245.091565 286.069848
21 11776.0 423.724129 249.447482 288.981596
22 12288.0 423.116206 253.578674 294.323369
23 12800.0 415.696898 253.884294 290.359162
24 13312.0 410.652963 251.962147 289.916513
25 13824.0 404.112047 256.593977 291.543045
26 14336.0 394.568805 251.508762 285.293536
27 14848.0 383.586664 257.479779 289.481735
28 15360.0 378.480483 259.971797 289.129401
29 15872.0 370.552519 260.909579 289.899545
0 1024.0 311.088617 97.912354 303.407414
1 1536.0 351.085717 134.540150 341.333333
2 2048.0 423.724127 160.627450 334.367350
3 2560.0 465.454542 181.238943 330.322572
4 3072.0 515.580429 192.501302 317.793096
5 3584.0 551.384634 208.271186 312.785456
6 4096.0 568.231237 220.412561 296.990947
7 4608.0 498.162157 232.825259 290.267724
8 5120.0 527.381977 242.366855 287.102804
9 5632.0 540.671974 243.107920 289.438969
10 6144.0 542.117638 248.661056 286.879370
11 6656.0 528.953642 256.000009 285.767438
12 7168.0 505.976473 260.260201 284.821192
13 7680.0 485.052616 262.938666 279.696505
14 8192.0 460.440290 266.767970 284.526763
15 8704.0 416.127506 267.472468 284.987724
16 9216.0 429.483477 271.391419 288.375482
17 9728.0 437.213490 280.615388 290.027323
18 10240.0 446.836366 286.100109 287.775181
19 10752.0 430.079980 246.935876 290.267711
20 11264.0 429.786952 245.536784 286.980888
21 11776.0 423.089806 249.667843 289.277383
22 12288.0 419.504980 254.673582 294.617366
23 12800.0 414.016170 253.884294 289.811310
24 13312.0 412.242569 252.959629 290.443638
25 13824.0 406.588243 257.390218 292.056329
26 14336.0 396.387109 255.051144 287.198654
27 14848.0 386.498925 257.852379 289.717061
28 15360.0 376.547496 257.970599 288.225185
29 15872.0 368.046389 261.626369 290.562936
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 13.066 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 11.999 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>13:03.344</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:51.914</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:41.235</p></td>
<td><p>05:29.048</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:22.726</p></td>
<td><p>03:24.631</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:13.066</p></td>
<td><p>02:11.999</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:46.208</p></td>
<td><p>01:46.226</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.109</p></td>
<td><p>00:00.010</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>