[PYTHON] Made bench_blocksparse
and bench_cross_entropy
compatible
with the new performance report API
This commit is contained in:
@@ -16,22 +16,26 @@ confs = [
|
||||
for mode in ['forward', 'backward']
|
||||
]
|
||||
|
||||
|
||||
@triton.testing.perf_report(confs)
|
||||
def bench_op(M, N, dtype, mode, provider):
|
||||
# create inputs
|
||||
x = torch.randn(M, N, dtype=dtype, device='cuda', requires_grad=True)
|
||||
idx = 4 + torch.ones(M, dtype=torch.int64, device='cuda')
|
||||
num_gb = (2 * x.numel() * x.element_size() * 1e-9)
|
||||
gbps = lambda ms: num_gb / ms * 1e3
|
||||
# forward pass
|
||||
op = {'torch': torch.nn.CrossEntropyLoss(reduction='none'), \
|
||||
'triton': triton.ops.cross_entropy}[provider]
|
||||
if mode == 'forward':
|
||||
ms = triton.testing.do_bench(lambda: op(x, idx))
|
||||
mean_ms, min_ms, max_ms = triton.testing.do_bench(lambda: op(x, idx))
|
||||
if mode == 'backward':
|
||||
y = op(x, idx)
|
||||
dy = torch.randn_like(y)
|
||||
ms = triton.testing.do_bench(lambda: y.backward(dy, retain_graph=True), grad_to_none=x)
|
||||
return num_gb / ms * 1e3
|
||||
fn = lambda: y.backward(dy, retain_graph=True)
|
||||
mean_ms, min_ms, max_ms = triton.testing.do_bench(fn, grad_to_none=x)
|
||||
return gbps(mean_ms), gbps(min_ms), gbps(max_ms)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
bench_op.run('tmp', False)
|
Reference in New Issue
Block a user