[OPS][BLOCKSPARSE] Improved robustness, clarity and performance (#450)

* dds layout now internally re-uses dsd code path for increased code 
* at_mask and kp_mask related things are now dropped from the softmax API. I couldn't think of any case where it was needed beyond is_causal. And if there is any, we should probably find a way to get it implemented statically so that users don't have to materialize masks.
 * fixed bug in blocksparse matmul that caused troubles when layout had a full row/col of zeros
 * blocksparse softmax now no longer modifies any data in-place
 * blocksparse softmax now takes an is_dense arguments that provides better performance. Passing is_dense=True, is_causal=True is the best way to achieve triangular attention.
  * unit tests now test backward pass
This commit is contained in:
Philippe Tillet
2022-02-06 18:00:45 -08:00
committed by GitHub
parent 69ff52ea1f
commit 5a8a544d10
4 changed files with 311 additions and 361 deletions

View File

@@ -10,77 +10,108 @@ import triton
@pytest.mark.parametrize("BLOCK", [16, 32, 64])
@pytest.mark.parametrize("DTYPE", [torch.float16])
def test_matmul(MODE, TRANS_A, TRANS_B, BLOCK, DTYPE, Z=3, H=2, M=512, N=384, K=256):
# set seed
torch.random.manual_seed(0)
seed = 0
torch.manual_seed(seed)
is_sdd = MODE == "sdd"
is_dsd = MODE == "dsd"
is_dds = MODE == "dds"
do_sparsify = lambda x: triton.testing.sparsify_tensor(x, layout, BLOCK)
do_mask = lambda x: triton.testing.mask_tensor(x, layout, BLOCK)
# create inputs
a = torch.randn((Z, H, K, M) if TRANS_A else (Z, H, M, K), dtype=DTYPE, device="cuda")
b = torch.randn((Z, H, N, K) if TRANS_B else (Z, H, K, N), dtype=DTYPE, device="cuda")
# create op
a_shape = (Z, H, K, M) if TRANS_A else (Z, H, M, K)
b_shape = (Z, H, N, K) if TRANS_B else (Z, H, K, N)
c_shape = (Z, H, M, N)
shape = {
"sdd": (M, N),
"dsd": (a.shape[2], a.shape[3]),
"dds": (b.shape[2], b.shape[3]),
"dsd": (a_shape[2], a_shape[3]),
"dds": (b_shape[2], b_shape[3]),
}[MODE]
layout = torch.randint(2, (H, shape[0] // BLOCK, shape[1] // BLOCK))
layout[1, 2, :] = 0
layout[1, :, 1] = 0
# create data
a_ref, a_tri = triton.testing.make_pair(a_shape, alpha=.1)
b_ref, b_tri = triton.testing.make_pair(b_shape, alpha=.1)
dc_ref, dc_tri = triton.testing.make_pair(c_shape)
# compute [torch]
dc_ref = do_mask(dc_ref) if is_sdd else dc_ref
a_ref = do_mask(a_ref) if is_dsd else a_ref
b_ref = do_mask(b_ref) if is_dds else b_ref
a_ref.retain_grad()
b_ref.retain_grad()
c_ref = torch.matmul(a_ref.transpose(2, 3) if TRANS_A else a_ref,
b_ref.transpose(2, 3) if TRANS_B else b_ref)
c_ref.backward(dc_ref)
c_ref = do_sparsify(c_ref) if is_sdd else c_ref
da_ref = do_sparsify(a_ref.grad) if is_dsd else a_ref.grad
db_ref = do_sparsify(b_ref.grad) if is_dds else b_ref.grad
# triton result
dc_tri = do_sparsify(dc_tri) if is_sdd else dc_tri
a_tri = do_sparsify(a_tri) if is_dsd else a_tri
b_tri = do_sparsify(b_tri) if is_dds else b_tri
a_tri.retain_grad()
b_tri.retain_grad()
op = triton.ops.blocksparse.matmul(layout, BLOCK, MODE, trans_a=TRANS_A, trans_b=TRANS_B, device="cuda")
ra = triton.testing.sparsify_tensor(a, layout, BLOCK) if MODE == "dsd" else a
rb = triton.testing.sparsify_tensor(b, layout, BLOCK) if MODE == "dds" else b
rc = triton.testing.catch_oor(lambda: op(ra, rb), pytest)
# torch result
ta = triton.testing.mask_tensor(a, layout, BLOCK) if MODE == "dsd" else a
tb = triton.testing.mask_tensor(b, layout, BLOCK) if MODE == "dds" else b
ta = ta.transpose(2, 3) if TRANS_A else ta
tb = tb.transpose(2, 3) if TRANS_B else tb
tc = torch.matmul(ta, tb)
tc = triton.testing.mask_tensor(tc, layout, BLOCK) if MODE == "sdd" else tc
tc = triton.testing.sparsify_tensor(tc, layout, BLOCK) if MODE == "sdd" else tc
c_tri = triton.testing.catch_oor(lambda: op(a_tri, b_tri), pytest)
triton.testing.catch_oor(lambda: c_tri.backward(dc_tri), pytest)
da_tri = a_tri.grad
db_tri = b_tri.grad
# compare
triton.testing.assert_almost_equal(rc, tc)
triton.testing.assert_almost_equal(c_ref, c_tri)
triton.testing.assert_almost_equal(da_ref, da_tri)
triton.testing.assert_almost_equal(db_ref, db_tri)
@pytest.mark.parametrize("BLOCK", [16, 32, 64])
@pytest.mark.parametrize("WIDTH", [256, 576, 1024, 1792])
@pytest.mark.parametrize("DTYPE", [torch.float16, torch.float32])
def test_softmax(BLOCK, WIDTH, DTYPE):
is_causal = True
configs = [
(16, 256),
(32, 576),
(64, 1871),
(128, 2511),
]
@pytest.mark.parametrize("is_dense", [False, True])
@pytest.mark.parametrize("BLOCK, WIDTH", configs)
def test_softmax(BLOCK, WIDTH, is_dense, Z=2, H=2, is_causal=True, scale=0.4):
# set seed
torch.random.manual_seed(0)
Z, H, M, N = 1, 1, WIDTH, WIDTH
scale = 0.4
# create inputs
layout = torch.randint(2, (H, M // BLOCK, N // BLOCK))
x = torch.randn((Z, H, M, N), dtype=DTYPE, requires_grad=True, device="cuda")
at_mask = torch.randint(low=0, high=2, size=(N, N), dtype=torch.bool, requires_grad=False, device="cuda")
Z, H, M, N = 2, 3, WIDTH, WIDTH
# initialize layout
# make sure each row has at least one non-zero element
torch.diagonal(layout)[:] = 1
torch.diagonal(at_mask)[:] = 1
kp_mask = torch.randint(low=0, high=2, size=(Z, N), dtype=DTYPE, requires_grad=False, device="cuda")
kp_mask[:] = 0
kp_mask[kp_mask == 1.0] = float("-inf")
# triton result
op = triton.ops.blocksparse.softmax(layout, BLOCK)
tx = triton.testing.sparsify_tensor(x, layout, BLOCK)
ty = op(
tx,
scale=scale,
key_padding_mask=kp_mask,
key_padding_mask_mode="add",
attn_mask=at_mask.to(DTYPE),
attn_mask_mode="mul",
is_causal=is_causal,
)
# torch result
rx = triton.testing.mask_tensor(x, layout, BLOCK, value=float("-inf"))
# broadcast at_mask to the same shape as rx
layout = torch.randint(2, (H, M // BLOCK, N // BLOCK))
if is_dense:
layout[:] = 1
else:
layout[1, 2, :] = 0
layout[1, :, 1] = 0
# initialize data
a_shape = (Z, H, M, N)
a_ref, a_tri = triton.testing.make_pair(a_shape)
dout_ref, dout_tri = triton.testing.make_pair(a_shape)
# compute [torch]
a_ref = triton.testing.mask_tensor(a_ref, layout, BLOCK, value=float("-inf"))
a_ref.retain_grad()
at_mask = torch.ones((M, N), device="cuda")
if is_causal:
at_mask = torch.tril(at_mask)
M = at_mask[None, None, :, :] + torch.zeros_like(rx)
rx[M == 0] = float("-inf")
# rx += kp_mask[:, None, None, :]
ry = torch.softmax(rx * scale, -1)
ry = triton.testing.sparsify_tensor(ry, layout, BLOCK)
M = at_mask[None, None, :, :] + torch.zeros_like(a_ref)
a_ref[M == 0] = float("-inf")
out_ref = torch.softmax(a_ref * scale, -1)
out_ref.backward(dout_ref)
out_ref = triton.testing.sparsify_tensor(out_ref, layout, BLOCK)
da_ref = triton.testing.sparsify_tensor(a_ref.grad, layout, BLOCK)
# compute [triton]
a_tri = triton.testing.sparsify_tensor(a_tri, layout, BLOCK)
a_tri.retain_grad()
dout_tri = triton.testing.sparsify_tensor(dout_tri, layout, BLOCK)
op = triton.ops.blocksparse.softmax(layout, BLOCK, device="cuda", is_dense=is_dense)
out_tri = op(a_tri, scale=scale, is_causal=is_causal)
out_tri.backward(dout_tri)
da_tri = a_tri.grad
# compare
triton.testing.assert_almost_equal(ry, ty)
triton.testing.assert_almost_equal(out_tri, out_ref)
triton.testing.assert_almost_equal(da_tri, da_ref)
@pytest.mark.parametrize("block", [16, 32, 64])
@@ -99,14 +130,6 @@ def test_attention_fwd_bwd(
qkvs = [
torch.nn.Parameter(input_scale * torch.randn(qkv_shape), requires_grad=True).to(dtype).cuda() for _ in range(3)
]
attn_mask = torch.tril(
torch.ones(
[n_ctx, n_ctx],
device="cuda",
dtype=dtype,
),
diagonal=0,
)
# Triton:
n_blocks = n_ctx // block
@@ -115,7 +138,7 @@ def test_attention_fwd_bwd(
query.retain_grad()
key.retain_grad()
value.retain_grad()
attn_out = triton_attention(layout, block, attn_mask, query=query, key=key, value=value, scale=scale)
attn_out = triton_attention(layout, block, query=query, key=key, value=value, scale=scale)
# ad hoc loss
loss = (attn_out ** 2).mean()
loss.backward()
@@ -123,6 +146,8 @@ def test_attention_fwd_bwd(
# Torch version:
torch_q, torch_k, torch_v = [x.clone() for x in qkvs]
attn_mask = torch.ones([n_ctx, n_ctx], device="cuda", dtype=dtype)
attn_mask = torch.tril(attn_mask, diagonal=0)
attn_mask = 1e6 * (-1 + (attn_mask.reshape((1, 1, n_ctx, n_ctx)).cuda()))
torch_q.retain_grad()
torch_k.retain_grad()
@@ -147,7 +172,6 @@ def test_attention_fwd_bwd(
def triton_attention(
layout,
block: int,
attn_mask: torch.Tensor,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
@@ -155,12 +179,9 @@ def triton_attention(
):
sparse_dot_sdd_nt = triton.ops.blocksparse.matmul(layout, block, "sdd", trans_a=False, trans_b=True, device=value.device)
sparse_dot_dsd_nn = triton.ops.blocksparse.matmul(layout, block, "dsd", trans_a=False, trans_b=False, device=value.device)
sparse_softmax = triton.ops.blocksparse.softmax(
layout,
block,
)
sparse_softmax = triton.ops.blocksparse.softmax(layout, block, device=value.device)
w = sparse_dot_sdd_nt(query, key)
w = sparse_softmax(w, scale=scale, attn_mask=attn_mask, attn_mask_mode="mul")
w = sparse_softmax(w, scale=scale, is_causal=True)
a = sparse_dot_dsd_nn(w, value)
return a