[CODEGEN] Fixed bug that caused conditional operator to not always
properly mask load operations Also includes minor improvement to benchmarking infrastructure
This commit is contained in:
@@ -2,33 +2,39 @@ import triton
|
||||
import torch
|
||||
import os
|
||||
|
||||
|
||||
def rounded_linspace(low, high, steps, div):
|
||||
ret = torch.linspace(low, high, steps)
|
||||
ret = (ret.int() + div - 1) // div * div
|
||||
ret = torch.unique(ret)
|
||||
return list(map(int, ret))
|
||||
|
||||
|
||||
# Square benchmarks
|
||||
nt = {False: "n", True: "t"}
|
||||
square_confs = [
|
||||
triton.testing.Benchmark(
|
||||
x_names=["M", "N", "K"],
|
||||
x_vals=rounded_linspace(512, 8192, 17, 128),
|
||||
x_vals=rounded_linspace(512, 8192, 32, 128),
|
||||
y_name="provider",
|
||||
y_vals=["torch", "triton", "cutlass"],
|
||||
y_lines=["Torch", "Triton", "CUTLASS"],
|
||||
ylabel="TFLOPS",
|
||||
loglog=False,
|
||||
plot_name=f"matmul-square-{nt[AT]}{nt[BT]}",
|
||||
args={"AT": AT, "BT": BT, "dtype": torch.float16},
|
||||
) for AT in [False, True] for BT in [False, True]
|
||||
args={
|
||||
"AT": AT,
|
||||
"BT": BT,
|
||||
"dtype": torch.float16
|
||||
},
|
||||
) for AT in [False] for BT in [False]
|
||||
]
|
||||
|
||||
# Transformer training benchmarks
|
||||
transformer_confs = [
|
||||
triton.testing.Benchmark(
|
||||
x_names=[x],
|
||||
x_vals = rounded_linspace(NK//16, NK, 33, 128),
|
||||
x_vals = rounded_linspace(NK//16, NK, 32, 128),
|
||||
y_name="provider",
|
||||
y_vals=["torch", "triton", "cutlass"],
|
||||
y_lines=["Torch", "Triton", "CUTLASS"],
|
||||
@@ -41,21 +47,21 @@ transformer_confs = [
|
||||
for M in [2048]
|
||||
]
|
||||
|
||||
@triton.testing.perf_report(square_confs)
|
||||
def bench_op(M, N, K, AT, BT, dtype, provider, warmup=5, rep=40):
|
||||
|
||||
@triton.testing.perf_report(transformer_confs)
|
||||
def bench_op(M, N, K, AT, BT, dtype, provider, warmup=10, rep=50):
|
||||
a = torch.rand((K, M) if AT else (M, K), device="cuda", dtype=dtype)
|
||||
b = torch.rand((N, K) if BT else (K, N), device="cuda", dtype=dtype)
|
||||
if AT: a = a.t()
|
||||
if BT: b = b.t()
|
||||
num_flops = 2 * M * N * K
|
||||
tflops = lambda ms: 2. * M * N * K / ms * 1e-9
|
||||
if provider == "torch":
|
||||
torch_ms = triton.testing.do_bench(lambda: torch.matmul(a, b), warmup=warmup, rep=rep)
|
||||
torch_tflops = num_flops / torch_ms * 1e-9
|
||||
return torch_tflops
|
||||
ms, min_ms, max_ms = triton.testing.do_bench(lambda: torch.matmul(a, b), warmup=warmup, rep=rep)
|
||||
return tflops(ms), tflops(max_ms), tflops(min_ms)
|
||||
if provider == "triton":
|
||||
triton_ms = triton.testing.do_bench(lambda: triton.ops.matmul(a, b), warmup=warmup, rep=rep)
|
||||
triton_tflops = num_flops / triton_ms * 1e-9
|
||||
return triton_tflops
|
||||
ms, min_ms, max_ms = triton.testing.do_bench(lambda: triton.ops.matmul(a, b), warmup=warmup, rep=rep)
|
||||
return tflops(ms), tflops(max_ms), tflops(min_ms)
|
||||
if provider == "cutlass" and "CUTLASS_PROFILER" in os.environ:
|
||||
import subprocess
|
||||
import tempfile
|
||||
@@ -87,6 +93,6 @@ def bench_op(M, N, K, AT, BT, dtype, provider, warmup=5, rep=40):
|
||||
subprocess.run(cmd, stdout=subprocess.PIPE)
|
||||
# read CSV output
|
||||
df_c = pd.read_csv(f"{fname}.gemm.csv")
|
||||
cutlass_tflops = max(df_c["GFLOPs"]) / 1e3
|
||||
return cutlass_tflops
|
||||
tflops = max(df_c["GFLOPs"]) / 1e3
|
||||
return tflops
|
||||
return None
|
||||
|
@@ -26,7 +26,7 @@ __global__ void backward(TYPE *neg_logprobs, long *indices, TYPE *dneg_logprobs,
|
||||
TYPE local_dn = *(dneg_logprobs + row);
|
||||
// We know d(-log(p[i])/dlogit[k] = -id_mat[i,k] + p[k]
|
||||
// and we have -log(p[k]) stored, so this is easy
|
||||
TYPE intermediate[TILE] = check ? exp(-(float[TILE]) * ? (check)px) : 0;
|
||||
TYPE intermediate[TILE] = check ? exp(-(float[TILE]) * px) : 0;
|
||||
// selected_logit_idx is selected logit index for our token
|
||||
bool find_one[TILE] = ((0 ... TILE) == local_ind);
|
||||
intermediate = intermediate - ((TYPE[TILE])find_one);
|
||||
|
@@ -26,35 +26,34 @@ def allclose(x, y):
|
||||
return err < tol
|
||||
|
||||
|
||||
def do_bench(fn, warmup=10, rep=50, grad_to_none=None, clear_l2=False):
|
||||
start_event = torch.cuda.Event(enable_timing=True)
|
||||
end_event = torch.cuda.Event(enable_timing=True)
|
||||
# warmup to put the clock in a stable regime
|
||||
ret = fn()
|
||||
for i in range(warmup):
|
||||
fn()
|
||||
torch.cuda.synchronize()
|
||||
total_ms = 0
|
||||
def do_bench(fn, warmup=10, rep=50, grad_to_none=None):
|
||||
# We maintain a buffer of 256 MB that we clear
|
||||
# before each kernel call to make sure that the L2
|
||||
# doesn't contain any input data before the run
|
||||
start_event = [torch.cuda.Event(enable_timing=True) for i in range(rep)]
|
||||
end_event = [torch.cuda.Event(enable_timing=True) for i in range(rep)]
|
||||
cache = torch.empty(int(256e6), dtype=torch.int8, device='cuda')
|
||||
for i in range(rep):
|
||||
for i in range(warmup + rep):
|
||||
# we don't want `fn` to accumulate gradient values
|
||||
# if it contains a backward pass. So we clear the
|
||||
# provided gradients
|
||||
if grad_to_none is not None:
|
||||
grad_to_none.grad = None
|
||||
# reset L2
|
||||
# we clear the L2 cache before each run
|
||||
cache.zero_()
|
||||
# record time of `fn`
|
||||
start_event.record()
|
||||
if i >= warmup:
|
||||
start_event[i - warmup].record()
|
||||
fn()
|
||||
end_event.record()
|
||||
torch.cuda.synchronize()
|
||||
total_ms += start_event.elapsed_time(end_event)
|
||||
# return the average runtime of `fn`
|
||||
return total_ms / rep
|
||||
if i >= warmup:
|
||||
end_event[i - warmup].record()
|
||||
torch.cuda.synchronize()
|
||||
times = torch.tensor([s.elapsed_time(e) for s, e in zip(start_event, end_event)])
|
||||
q = torch.quantile(times, torch.tensor([0.1, 0.5, 0.9]))
|
||||
min_ms = q[0].item()
|
||||
mean_ms = q[1].item()
|
||||
max_ms = q[2].item()
|
||||
return mean_ms, min_ms, max_ms
|
||||
|
||||
|
||||
class Benchmark:
|
||||
@@ -79,22 +78,42 @@ class Mark:
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
import os
|
||||
|
||||
df = pd.DataFrame(columns=[bench.x_names[0]] + bench.y_lines)
|
||||
y_mean = bench.y_lines
|
||||
y_min = [f'{x}-min' for x in bench.y_lines]
|
||||
y_max = [f'{x}-max' for x in bench.y_lines]
|
||||
df = pd.DataFrame(columns=[bench.x_names[0]] + y_mean + y_min + y_max)
|
||||
for x in bench.x_vals:
|
||||
x_args = {x_name: x for x_name in bench.x_names}
|
||||
row = [self.fn(**x_args, **{bench.y_name: y}, **bench.args) for y in bench.y_vals]
|
||||
df.loc[len(df)] = [x] + row
|
||||
row_mean, row_min, row_max = [], [], []
|
||||
for y in bench.y_vals:
|
||||
ret = self.fn(**x_args, **{bench.y_name: y}, **bench.args)
|
||||
try:
|
||||
y_mean, y_min, y_max = ret
|
||||
except TypeError:
|
||||
y_mean, y_min, y_max = ret, None, None
|
||||
row_mean += [y_mean]
|
||||
row_min += [y_min]
|
||||
row_max += [y_max]
|
||||
df.loc[len(df)] = [x] + row_mean + row_min + row_max
|
||||
if with_plot and bench.plot_name:
|
||||
plt.figure()
|
||||
ax = plt.subplot()
|
||||
xlabel = " = ".join(bench.x_names)
|
||||
plot = df.plot(x=bench.x_names[0], y=bench.y_lines)
|
||||
plot.set_xlabel(xlabel)
|
||||
plot.set_ylabel(bench.ylabel)
|
||||
plot.set_title(bench.plot_name)
|
||||
plot.set_xscale("log" if bench.loglog else "linear")
|
||||
plot.set_yscale("log" if bench.loglog else "linear")
|
||||
x = bench.x_names[0]
|
||||
for y in bench.y_lines:
|
||||
y_min, y_max = df[y + '-min'], df[y + '-max']
|
||||
ax.plot(df[x], df[y], label=y)
|
||||
if y_min is not None and y_max is not None:
|
||||
ax.fill_between(df[x], y_min, y_max, alpha=0.5)
|
||||
ax.legend()
|
||||
ax.set_xlabel(xlabel)
|
||||
ax.set_ylabel(bench.ylabel)
|
||||
ax.set_title(bench.plot_name)
|
||||
ax.set_xscale("log" if bench.loglog else "linear")
|
||||
ax.set_yscale("log" if bench.loglog else "linear")
|
||||
plt.savefig(os.path.join(result_path, f"{bench.plot_name}.png"))
|
||||
df.to_csv(os.path.join(result_path, f"{bench.plot_name}.csv"))
|
||||
df = df[[bench.x_names[0]] + bench.y_lines]
|
||||
df.to_csv(os.path.join(result_path, f"{bench.plot_name}.csv"), float_format='%.1f', index=False)
|
||||
|
||||
def run(self, result_path, with_plot):
|
||||
with open(os.path.join(result_path, "results.html"), "w") as html:
|
||||
|
Reference in New Issue
Block a user