diff --git a/lib/Dialect/TritonGPU/Transforms/Combine.cpp b/lib/Dialect/TritonGPU/Transforms/Combine.cpp index 918bdecb6..2b3aa239d 100644 --- a/lib/Dialect/TritonGPU/Transforms/Combine.cpp +++ b/lib/Dialect/TritonGPU/Transforms/Combine.cpp @@ -483,7 +483,7 @@ public: return op->getBlock() == cvt->getBlock() && !(isa(op) && !op->getResult(0).getType().isa()) && - // !isa(op) && + !isa(op) && !isa(op); }; mlir::getForwardSlice(cvt.getResult(), &cvtSlices, filter); diff --git a/python/bwd.ttgir b/python/bwd.ttgir index 0f5a057dd..00ada39a0 100644 --- a/python/bwd.ttgir +++ b/python/bwd.ttgir @@ -1,20 +1,19 @@ #blocked0 = #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [32], warpsPerCTA = [8], order = [0]}> #blocked1 = #triton_gpu.blocked<{sizePerThread = [1, 8], threadsPerWarp = [4, 8], warpsPerCTA = [8, 1], order = [1, 0]}> #blocked2 = #triton_gpu.blocked<{sizePerThread = [1, 4], threadsPerWarp = [2, 16], warpsPerCTA = [8, 1], order = [1, 0]}> -#blocked3 = #triton_gpu.blocked<{sizePerThread = [1, 1], threadsPerWarp = [32, 1], warpsPerCTA = [4, 2], order = [0, 1]}> -#mma0 = #triton_gpu.mma<{versionMajor = 2, versionMinor = 0, warpsPerCTA = [4, 2]}> -#mma1 = #triton_gpu.mma<{versionMajor = 2, versionMinor = 0, warpsPerCTA = [8, 1]}> +#mma0 = #triton_gpu.mma<{versionMajor = 2, versionMinor = 0, warpsPerCTA = [8, 1]}> +#mma1 = #triton_gpu.mma<{versionMajor = 2, versionMinor = 0, warpsPerCTA = [4, 2]}> #shared0 = #triton_gpu.shared<{vec = 1, perPhase = 1, maxPhase = 1, order = [1, 0]}> -#shared1 = #triton_gpu.shared<{vec = 1, perPhase = 1, maxPhase = 1, order = [0, 1]}> +#shared1 = #triton_gpu.shared<{vec = 1, perPhase = 1, maxPhase = 8, order = [0, 1]}> module attributes {"triton_gpu.num-warps" = 8 : i32} { func public @_bwd_kernel_0d1d2d34d5d6d7d8d9d10d11d12d13d14d15c16d17d18d19c20d21d22d23c2425d26d27(%arg0: !tt.ptr {tt.divisibility = 16 : i32}, %arg1: !tt.ptr {tt.divisibility = 16 : i32}, %arg2: !tt.ptr {tt.divisibility = 16 : i32}, %arg3: f32, %arg4: !tt.ptr {tt.divisibility = 16 : i32}, %arg5: !tt.ptr {tt.divisibility = 16 : i32}, %arg6: !tt.ptr {tt.divisibility = 16 : i32}, %arg7: !tt.ptr {tt.divisibility = 16 : i32}, %arg8: !tt.ptr {tt.divisibility = 16 : i32}, %arg9: !tt.ptr {tt.divisibility = 16 : i32}, %arg10: !tt.ptr {tt.divisibility = 16 : i32}, %arg11: !tt.ptr {tt.divisibility = 16 : i32}, %arg12: i32 {tt.divisibility = 16 : i32}, %arg13: i32 {tt.divisibility = 16 : i32}, %arg14: i32 {tt.divisibility = 16 : i32}, %arg15: i32 {tt.divisibility = 16 : i32}, %arg16: i32 {tt.divisibility = 16 : i32}, %arg17: i32 {tt.divisibility = 16 : i32}, %arg18: i32 {tt.divisibility = 16 : i32}, %arg19: i32 {tt.divisibility = 16 : i32}, %arg20: i32 {tt.divisibility = 16 : i32}, %arg21: i32, %arg22: i32 {tt.divisibility = 16 : i32}, %arg23: i32 {tt.divisibility = 16 : i32}, %arg24: i32) { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c128_i32 = arith.constant 128 : i32 %c128 = arith.constant 128 : index - %cst = arith.constant dense<0xFF800000> : tensor<128x128xf32, #blocked3> - %cst_0 = arith.constant dense<0.000000e+00> : tensor<128x64xf32, #mma0> - %cst_1 = arith.constant dense<0.000000e+00> : tensor<128x128xf32, #mma1> + %cst = arith.constant dense<0.000000e+00> : tensor<128x64xf32, #mma1> + %cst_0 = arith.constant dense<0.000000e+00> : tensor<128x128xf32, #mma0> + %cst_1 = arith.constant dense<0xFF800000> : tensor<128x128xf32, #mma0> %0 = tt.get_program_id {axis = 0 : i32} : i32 %1 = arith.divsi %0, %arg22 : i32 %2 = arith.remsi %0, %arg22 : i32 @@ -31,9 +30,9 @@ module attributes {"triton_gpu.num-warps" = 8 : i32} { %13 = arith.index_cast %arg24 : i32 to index %14 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #blocked0> %15 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked1}>> - %16 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #triton_gpu.slice<{dim = 0, parent = #blocked3}>> + %16 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #triton_gpu.slice<{dim = 0, parent = #mma0}>> %17 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked2}>> - %18 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked3}>> + %18 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #mma0}>> %19 = tt.splat %arg14 : (i32) -> tensor<128x1xi32, #blocked1> %20 = tt.splat %arg14 : (i32) -> tensor<128x1xi32, #blocked2> %21 = tt.make_range {end = 64 : i32, start = 0 : i32} : tensor<64xi32, #triton_gpu.slice<{dim = 0, parent = #blocked1}>> @@ -54,7 +53,7 @@ module attributes {"triton_gpu.num-warps" = 8 : i32} { %36 = arith.muli %arg24, %c128_i32 : i32 %37 = arith.index_cast %36 : i32 to index %38 = tt.splat %35 : (!tt.ptr) -> tensor<128x!tt.ptr, #blocked0> - %39 = tt.splat %arg3 : (f32) -> tensor<128x128xf32, #blocked3> + %39 = tt.splat %arg3 : (f32) -> tensor<128x128xf32, #mma0> %40 = tt.splat %34 : (!tt.ptr) -> tensor<128x!tt.ptr, #blocked0> %41 = arith.muli %arg14, %c128_i32 : i32 %42 = tt.splat %41 : (i32) -> tensor<128x64xi32, #blocked1> @@ -65,7 +64,7 @@ module attributes {"triton_gpu.num-warps" = 8 : i32} { %46 = arith.index_cast %arg25 : index to i32 %47 = arith.muli %46, %c128_i32 : i32 %48 = tt.splat %47 : (i32) -> tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked1}>> - %49 = tt.splat %47 : (i32) -> tensor<128xi32, #triton_gpu.slice<{dim = 0, parent = #blocked3}>> + %49 = tt.splat %47 : (i32) -> tensor<128xi32, #triton_gpu.slice<{dim = 0, parent = #mma0}>> %50 = tt.splat %47 : (i32) -> tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked2}>> %51 = arith.addi %48, %15 : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked1}>> %52 = arith.addi %50, %17 : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked2}>> @@ -84,9 +83,9 @@ module attributes {"triton_gpu.num-warps" = 8 : i32} { %65 = arith.index_cast %47 : i32 to index %66 = triton_gpu.convert_layout %59 : (tensor<128x64xf16, #blocked1>) -> tensor<128x64xf16, #shared0> %67 = tt.trans %66 : (tensor<128x64xf16, #shared0>) -> tensor<64x128xf16, #shared1> - %68 = arith.addi %49, %16 : tensor<128xi32, #triton_gpu.slice<{dim = 0, parent = #blocked3}>> - %69 = tt.expand_dims %68 {axis = 0 : i32} : (tensor<128xi32, #triton_gpu.slice<{dim = 0, parent = #blocked3}>>) -> tensor<1x128xi32, #blocked3> - %70 = tt.broadcast %69 : (tensor<1x128xi32, #blocked3>) -> tensor<128x128xi32, #blocked3> + %68 = arith.addi %49, %16 : tensor<128xi32, #triton_gpu.slice<{dim = 0, parent = #mma0}>> + %69 = tt.expand_dims %68 {axis = 0 : i32} : (tensor<128xi32, #triton_gpu.slice<{dim = 0, parent = #mma0}>>) -> tensor<1x128xi32, #mma0> + %70 = tt.broadcast %69 : (tensor<1x128xi32, #mma0>) -> tensor<128x128xi32, #mma0> %71 = triton_gpu.convert_layout %64 : (tensor<128x64xf16, #blocked1>) -> tensor<128x64xf16, #shared0> %72 = tt.trans %71 : (tensor<128x64xf16, #shared0>) -> tensor<64x128xf16, #shared1> %73 = arith.muli %54, %20 : tensor<128x1xi32, #blocked2> @@ -95,74 +94,72 @@ module attributes {"triton_gpu.num-warps" = 8 : i32} { %76 = tt.addptr %32, %75 : tensor<128x64x!tt.ptr, #blocked2>, tensor<128x64xi32, #blocked2> %77 = tt.addptr %27, %62 : tensor<128x64x!tt.ptr, #blocked1>, tensor<128x64xi32, #blocked1> %78 = tt.addptr %31, %62 : tensor<128x64x!tt.ptr, #blocked1>, tensor<128x64xi32, #blocked1> - %79 = triton_gpu.convert_layout %67 : (tensor<64x128xf16, #shared1>) -> tensor<64x128xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma1}>> - %82:5 = scf.for %arg26 = %65 to %37 step %c128 iter_args(%arg27 = %cst_0, %arg28 = %cst_0, %arg29 = %76, %arg30 = %77, %arg31 = %78) -> (tensor<128x64xf32, #mma0>, tensor<128x64xf32, #mma0>, tensor<128x64x!tt.ptr, #blocked2>, tensor<128x64x!tt.ptr, #blocked1>, tensor<128x64x!tt.ptr, #blocked1>) { - %89 = arith.index_cast %arg26 : index to i32 - %90 = tt.splat %89 : (i32) -> tensor<128xi32, #blocked0> - %91 = tt.splat %89 : (i32) -> tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked3}>> - %92 = arith.addi %90, %14 : tensor<128xi32, #blocked0> - %93 = tt.load %arg30 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x64xf16, #blocked1> - %94 = triton_gpu.convert_layout %93 : (tensor<128x64xf16, #blocked1>) -> tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma1}>> - %95 = tt.dot %94, %79, %cst_1 {allowTF32 = true} : tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma1}>> * tensor<64x128xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma1}>> -> tensor<128x128xf32, #mma1> - %96 = triton_gpu.convert_layout %95 : (tensor<128x128xf32, #mma1>) -> tensor<128x128xf32, #blocked3> - %97 = arith.addi %91, %18 : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked3}>> - %98 = tt.expand_dims %97 {axis = 1 : i32} : (tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked3}>>) -> tensor<128x1xi32, #blocked3> - %99 = tt.broadcast %98 : (tensor<128x1xi32, #blocked3>) -> tensor<128x128xi32, #blocked3> - %100 = "triton_gpu.cmpi"(%99, %70) {predicate = 5 : i64} : (tensor<128x128xi32, #blocked3>, tensor<128x128xi32, #blocked3>) -> tensor<128x128xi1, #blocked3> - %101 = "triton_gpu.select"(%100, %96, %cst) : (tensor<128x128xi1, #blocked3>, tensor<128x128xf32, #blocked3>, tensor<128x128xf32, #blocked3>) -> tensor<128x128xf32, #blocked3> - %102 = tt.addptr %38, %92 : tensor<128x!tt.ptr, #blocked0>, tensor<128xi32, #blocked0> - %103 = tt.load %102 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128xf32, #blocked0> - %104 = arith.mulf %101, %39 : tensor<128x128xf32, #blocked3> - %105 = triton_gpu.convert_layout %103 : (tensor<128xf32, #blocked0>) -> tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #blocked3}>> - %106 = tt.expand_dims %105 {axis = 1 : i32} : (tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #blocked3}>>) -> tensor<128x1xf32, #blocked3> - %107 = tt.broadcast %106 : (tensor<128x1xf32, #blocked3>) -> tensor<128x128xf32, #blocked3> - %108 = arith.subf %104, %107 : tensor<128x128xf32, #blocked3> - %109 = math.exp %108 : tensor<128x128xf32, #blocked3> - %110 = tt.load %arg31 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x64xf16, #blocked1> - %111 = arith.truncf %109 : tensor<128x128xf32, #blocked3> to tensor<128x128xf16, #blocked3> - %112 = triton_gpu.convert_layout %111 : (tensor<128x128xf16, #blocked3>) -> tensor<128x128xf16, #shared1> - %113 = tt.trans %112 : (tensor<128x128xf16, #shared1>) -> tensor<128x128xf16, #shared0> - %114 = triton_gpu.convert_layout %113 : (tensor<128x128xf16, #shared0>) -> tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma0}>> - %115 = triton_gpu.convert_layout %110 : (tensor<128x64xf16, #blocked1>) -> tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma0}>> - %116 = tt.dot %114, %115, %arg27 {allowTF32 = true} : tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma0}>> * tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma0}>> -> tensor<128x64xf32, #mma0> - %117 = tt.addptr %40, %92 : tensor<128x!tt.ptr, #blocked0>, tensor<128xi32, #blocked0> - %118 = tt.load %117 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128xf32, #blocked0> - %119 = triton_gpu.convert_layout %118 : (tensor<128xf32, #blocked0>) -> tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma1}>> - %120 = tt.expand_dims %119 {axis = 1 : i32} : (tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma1}>>) -> tensor<128x1xf32, #mma1> - %121 = tt.broadcast %120 : (tensor<128x1xf32, #mma1>) -> tensor<128x128xf32, #mma1> - %122 = arith.subf %cst_1, %121 : tensor<128x128xf32, #mma1> - %123 = triton_gpu.convert_layout %110 : (tensor<128x64xf16, #blocked1>) -> tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma1}>> - %80 = triton_gpu.convert_layout %72 : (tensor<64x128xf16, #shared1>) -> tensor<64x128xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma1}>> - %124 = tt.dot %123, %80, %122 {allowTF32 = true} : tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma1}>> * tensor<64x128xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma1}>> -> tensor<128x128xf32, #mma1> - %125 = triton_gpu.convert_layout %124 : (tensor<128x128xf32, #mma1>) -> tensor<128x128xf32, #blocked3> - %126 = arith.mulf %109, %125 : tensor<128x128xf32, #blocked3> - %127 = arith.mulf %126, %39 : tensor<128x128xf32, #blocked3> - %128 = arith.truncf %127 : tensor<128x128xf32, #blocked3> to tensor<128x128xf16, #blocked3> - %129 = triton_gpu.convert_layout %128 : (tensor<128x128xf16, #blocked3>) -> tensor<128x128xf16, #shared1> - %130 = tt.trans %129 : (tensor<128x128xf16, #shared1>) -> tensor<128x128xf16, #shared0> - %131 = triton_gpu.convert_layout %130 : (tensor<128x128xf16, #shared0>) -> tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma0}>> - %132 = triton_gpu.convert_layout %93 : (tensor<128x64xf16, #blocked1>) -> tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma0}>> - %133 = tt.dot %131, %132, %arg28 {allowTF32 = true} : tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma0}>> * tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma0}>> -> tensor<128x64xf32, #mma0> - %134 = tt.load %arg29 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x64xf32, #blocked2> - %135 = triton_gpu.convert_layout %134 : (tensor<128x64xf32, #blocked2>) -> tensor<128x64xf32, #mma0> - %136 = triton_gpu.convert_layout %128 : (tensor<128x128xf16, #blocked3>) -> tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma0}>> - %81 = triton_gpu.convert_layout %59 : (tensor<128x64xf16, #blocked1>) -> tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma0}>> - %137 = tt.dot %136, %81, %135 {allowTF32 = true} : tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma0}>> * tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma0}>> -> tensor<128x64xf32, #mma0> - %138 = triton_gpu.convert_layout %137 : (tensor<128x64xf32, #mma0>) -> tensor<128x64xf32, #blocked2> - tt.store %arg29, %138 : tensor<128x64xf32, #blocked2> - %139 = tt.addptr %arg29, %43 : tensor<128x64x!tt.ptr, #blocked2>, tensor<128x64xi32, #blocked2> - %140 = tt.addptr %arg30, %42 : tensor<128x64x!tt.ptr, #blocked1>, tensor<128x64xi32, #blocked1> - %141 = tt.addptr %arg31, %42 : tensor<128x64x!tt.ptr, #blocked1>, tensor<128x64xi32, #blocked1> - scf.yield %116, %133, %139, %140, %141 : tensor<128x64xf32, #mma0>, tensor<128x64xf32, #mma0>, tensor<128x64x!tt.ptr, #blocked2>, tensor<128x64x!tt.ptr, #blocked1>, tensor<128x64x!tt.ptr, #blocked1> + %91 = triton_gpu.convert_layout %67 : (tensor<64x128xf16, #shared1>) -> tensor<64x128xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma0}>> + %79:5 = scf.for %arg26 = %65 to %37 step %c128 iter_args(%arg27 = %cst, %arg28 = %cst, %arg29 = %76, %arg30 = %77, %arg31 = %78) -> (tensor<128x64xf32, #mma1>, tensor<128x64xf32, #mma1>, tensor<128x64x!tt.ptr, #blocked2>, tensor<128x64x!tt.ptr, #blocked1>, tensor<128x64x!tt.ptr, #blocked1>) { + %86 = arith.index_cast %arg26 : index to i32 + %87 = tt.splat %86 : (i32) -> tensor<128xi32, #blocked0> + %88 = tt.splat %86 : (i32) -> tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #mma0}>> + %89 = arith.addi %87, %14 : tensor<128xi32, #blocked0> + %90 = tt.load %arg30 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x64xf16, #blocked1> + %92 = triton_gpu.convert_layout %90 : (tensor<128x64xf16, #blocked1>) -> tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma0}>> + %93 = tt.dot %92, %91, %cst_0 {allowTF32 = true} : tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma0}>> * tensor<64x128xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma0}>> -> tensor<128x128xf32, #mma0> + %94 = arith.addi %88, %18 : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #mma0}>> + %95 = tt.expand_dims %94 {axis = 1 : i32} : (tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #mma0}>>) -> tensor<128x1xi32, #mma0> + %96 = tt.broadcast %95 : (tensor<128x1xi32, #mma0>) -> tensor<128x128xi32, #mma0> + %97 = "triton_gpu.cmpi"(%96, %70) {predicate = 5 : i64} : (tensor<128x128xi32, #mma0>, tensor<128x128xi32, #mma0>) -> tensor<128x128xi1, #mma0> + %98 = "triton_gpu.select"(%97, %93, %cst_1) : (tensor<128x128xi1, #mma0>, tensor<128x128xf32, #mma0>, tensor<128x128xf32, #mma0>) -> tensor<128x128xf32, #mma0> + %99 = tt.addptr %38, %89 : tensor<128x!tt.ptr, #blocked0>, tensor<128xi32, #blocked0> + %100 = tt.load %99 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128xf32, #blocked0> + %101 = arith.mulf %98, %39 : tensor<128x128xf32, #mma0> + %102 = triton_gpu.convert_layout %100 : (tensor<128xf32, #blocked0>) -> tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma0}>> + %103 = tt.expand_dims %102 {axis = 1 : i32} : (tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma0}>>) -> tensor<128x1xf32, #mma0> + %104 = tt.broadcast %103 : (tensor<128x1xf32, #mma0>) -> tensor<128x128xf32, #mma0> + %105 = arith.subf %101, %104 : tensor<128x128xf32, #mma0> + %106 = math.exp %105 : tensor<128x128xf32, #mma0> + %107 = tt.load %arg31 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x64xf16, #blocked1> + %108 = arith.truncf %106 : tensor<128x128xf32, #mma0> to tensor<128x128xf16, #mma0> + %109 = triton_gpu.convert_layout %108 : (tensor<128x128xf16, #mma0>) -> tensor<128x128xf16, #shared1> + %110 = tt.trans %109 : (tensor<128x128xf16, #shared1>) -> tensor<128x128xf16, #shared0> + %111 = triton_gpu.convert_layout %110 : (tensor<128x128xf16, #shared0>) -> tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma1}>> + %112 = triton_gpu.convert_layout %107 : (tensor<128x64xf16, #blocked1>) -> tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma1}>> + %113 = tt.dot %111, %112, %arg27 {allowTF32 = true} : tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma1}>> * tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma1}>> -> tensor<128x64xf32, #mma1> + %114 = tt.addptr %40, %89 : tensor<128x!tt.ptr, #blocked0>, tensor<128xi32, #blocked0> + %115 = tt.load %114 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128xf32, #blocked0> + %116 = triton_gpu.convert_layout %115 : (tensor<128xf32, #blocked0>) -> tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma0}>> + %117 = tt.expand_dims %116 {axis = 1 : i32} : (tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma0}>>) -> tensor<128x1xf32, #mma0> + %118 = tt.broadcast %117 : (tensor<128x1xf32, #mma0>) -> tensor<128x128xf32, #mma0> + %119 = arith.subf %cst_0, %118 : tensor<128x128xf32, #mma0> + %120 = triton_gpu.convert_layout %107 : (tensor<128x64xf16, #blocked1>) -> tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma0}>> + %121 = triton_gpu.convert_layout %72 : (tensor<64x128xf16, #shared1>) -> tensor<64x128xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma0}>> + %122 = tt.dot %120, %121, %119 {allowTF32 = true} : tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma0}>> * tensor<64x128xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma0}>> -> tensor<128x128xf32, #mma0> + %123 = arith.mulf %106, %122 : tensor<128x128xf32, #mma0> + %124 = arith.mulf %123, %39 : tensor<128x128xf32, #mma0> + %125 = arith.truncf %124 : tensor<128x128xf32, #mma0> to tensor<128x128xf16, #mma0> + %126 = triton_gpu.convert_layout %125 : (tensor<128x128xf16, #mma0>) -> tensor<128x128xf16, #shared1> + %127 = tt.trans %126 : (tensor<128x128xf16, #shared1>) -> tensor<128x128xf16, #shared0> + %128 = triton_gpu.convert_layout %127 : (tensor<128x128xf16, #shared0>) -> tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma1}>> + %129 = triton_gpu.convert_layout %90 : (tensor<128x64xf16, #blocked1>) -> tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma1}>> + %130 = tt.dot %128, %129, %arg28 {allowTF32 = true} : tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma1}>> * tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma1}>> -> tensor<128x64xf32, #mma1> + %131 = tt.load %arg29 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x64xf32, #blocked2> + %132 = triton_gpu.convert_layout %131 : (tensor<128x64xf32, #blocked2>) -> tensor<128x64xf32, #mma1> + %133 = triton_gpu.convert_layout %125 : (tensor<128x128xf16, #mma0>) -> tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma1}>> + %134 = triton_gpu.convert_layout %59 : (tensor<128x64xf16, #blocked1>) -> tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma1}>> + %135 = tt.dot %133, %134, %132 {allowTF32 = true} : tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma1}>> * tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma1}>> -> tensor<128x64xf32, #mma1> + %136 = triton_gpu.convert_layout %135 : (tensor<128x64xf32, #mma1>) -> tensor<128x64xf32, #blocked2> + tt.store %arg29, %136 : tensor<128x64xf32, #blocked2> + %137 = tt.addptr %arg29, %43 : tensor<128x64x!tt.ptr, #blocked2>, tensor<128x64xi32, #blocked2> + %138 = tt.addptr %arg30, %42 : tensor<128x64x!tt.ptr, #blocked1>, tensor<128x64xi32, #blocked1> + %139 = tt.addptr %arg31, %42 : tensor<128x64x!tt.ptr, #blocked1>, tensor<128x64xi32, #blocked1> + scf.yield %113, %130, %137, %138, %139 : tensor<128x64xf32, #mma1>, tensor<128x64xf32, #mma1>, tensor<128x64x!tt.ptr, #blocked2>, tensor<128x64x!tt.ptr, #blocked1>, tensor<128x64x!tt.ptr, #blocked1> } - %83 = triton_gpu.convert_layout %82#1 : (tensor<128x64xf32, #mma0>) -> tensor<128x64xf32, #blocked1> - %84 = triton_gpu.convert_layout %82#0 : (tensor<128x64xf32, #mma0>) -> tensor<128x64xf32, #blocked1> - %85 = tt.addptr %44, %62 : tensor<128x64x!tt.ptr, #blocked1>, tensor<128x64xi32, #blocked1> - %86 = arith.truncf %84 : tensor<128x64xf32, #blocked1> to tensor<128x64xf16, #blocked1> - tt.store %85, %86 : tensor<128x64xf16, #blocked1> - %87 = tt.addptr %45, %57 : tensor<128x64x!tt.ptr, #blocked1>, tensor<128x64xi32, #blocked1> - %88 = arith.truncf %83 : tensor<128x64xf32, #blocked1> to tensor<128x64xf16, #blocked1> - tt.store %87, %88 : tensor<128x64xf16, #blocked1> + %80 = triton_gpu.convert_layout %79#1 : (tensor<128x64xf32, #mma1>) -> tensor<128x64xf32, #blocked1> + %81 = triton_gpu.convert_layout %79#0 : (tensor<128x64xf32, #mma1>) -> tensor<128x64xf32, #blocked1> + %82 = tt.addptr %44, %62 : tensor<128x64x!tt.ptr, #blocked1>, tensor<128x64xi32, #blocked1> + %83 = arith.truncf %81 : tensor<128x64xf32, #blocked1> to tensor<128x64xf16, #blocked1> + tt.store %82, %83 : tensor<128x64xf16, #blocked1> + %84 = tt.addptr %45, %57 : tensor<128x64x!tt.ptr, #blocked1>, tensor<128x64xi32, #blocked1> + %85 = arith.truncf %80 : tensor<128x64xf32, #blocked1> to tensor<128x64xf16, #blocked1> + tt.store %84, %85 : tensor<128x64xf16, #blocked1> } return } diff --git a/python/tutorials/06-fused-attention.py b/python/tutorials/06-fused-attention.py index 67a36fedc..6eea40916 100644 --- a/python/tutorials/06-fused-attention.py +++ b/python/tutorials/06-fused-attention.py @@ -326,6 +326,8 @@ def test_op(Z, H, N_CTX, D_HEAD, dtype=torch.float16): triton.testing.assert_almost_equal(ref_dv, tri_dv) triton.testing.assert_almost_equal(ref_dk, tri_dk) triton.testing.assert_almost_equal(ref_dq, tri_dq) + print(ref_dk, tri_dk) + print(ref_dq, tri_dq) BATCH, N_HEADS, N_CTX, D_HEAD = 4, 48, 4096, 64 # vary seq length for fixed head and batch=4