[PYTHON] Added automated benchmark script (#63)

This adds a bench functionality to the setup.py that can be used to run the benchmark suite and generates a bunch of csv files (and optionally plots)

python setup.py bench
python setup.py bench --with-plots
python setup.py bench --filter=cross_entropy
This commit is contained in:
Philippe Tillet
2021-02-08 12:16:41 -08:00
committed by Philippe Tillet
parent 66c94f21d7
commit 5e3c7f5a60
12 changed files with 472 additions and 339 deletions

View File

@@ -0,0 +1,87 @@
import torch
import triton
# -------------------------------
# Matrix Multiplication
# -------------------------------
nt = {False: 'n', True: 't'}
square_confs = [
triton.testing.Benchmark(
x_names = ['M', 'N', 'K'],
x_vals = [128, 256, 512, 1024, 2048, 3072, 4096, 6144],
y_name = 'block',
y_vals = [16, 32, 64],
y_lines = ['Block16', 'Block32', 'Block64'],
ylabel = 'TFLOPS',
loglog = False,
plot_name = f'{op_mode}-{layout_mode}-square-{nt[AT]}{nt[BT]}',
args = {'layout_mode': layout_mode, 'op_mode': op_mode,
'AT': AT, 'BT': BT, 'dtype': torch.float16, 'provider': 'triton'}
)\
for AT in [False] for BT in [False] \
for op_mode in ['sdd', 'dsd', 'dds'] for layout_mode in ['tril', 'dense']
]
@triton.testing.perf_report(square_confs)
def bench_matmul(M, N, K, block, layout_mode, op_mode, AT, BT, dtype, provider, warmup=5, rep=5):
Z, H = 1, 1
make_layout = {
'tril': lambda H, M, N: torch.tril(torch.ones((H, M, N), dtype=torch.int64)),\
'dense': lambda H, M, N: torch.ones(H, M, N, dtype=torch.int64),
}[layout_mode]
# create layout
shape = {'sdd': (M, N), 'dsd': (K, M) if AT else (M, K), 'dds': (N, K) if BT else (K, N)}[op_mode]
layout = make_layout(H, shape[0] // block, shape[1] // block)
# creat inputs
a = torch.randn((Z, H, K, M) if AT else (Z, H, M, K), dtype=dtype, device='cuda')
b = torch.randn((Z, H, N, K) if BT else (Z, H, K, N), dtype=dtype, device='cuda')
# create op
if provider == 'triton':
op = triton.ops.blocksparse.matmul(layout, block, op_mode, trans_a=AT, trans_b=BT)
# inputs
a = triton.testing.sparsify_tensor(a, layout, block) if op_mode == 'dsd' else a
b = triton.testing.sparsify_tensor(b, layout, block) if op_mode == 'dds' else b
ms = triton.testing.do_bench(lambda: op(a, b), warmup=warmup, rep=rep)
num_flops = {
'sdd': 2 * Z * K * float(layout.sum()) * block * block,\
'dsd': 2 * Z * N * float(layout.sum()) * block * block,\
'dds': 2 * Z * M * float(layout.sum()) * block * block
}[op_mode]*1e-12
triton_tflops = num_flops / ms * 1e3
return triton_tflops
# -------------------------------
# Softmax
# -------------------------------
square_confs = [
triton.testing.Benchmark(
x_names = ['M', 'N'],
x_vals = [128, 256, 512, 1024, 2048, 3072, 4096, 6144],
y_name = 'block',
y_vals = [16, 32, 64],
y_lines = ['Block16', 'Block32', 'Block64'],
ylabel = 'GBPS',
loglog = False,
plot_name = f'{layout_mode}-square',
args = {'layout_mode': layout_mode, 'dtype': torch.float16, 'provider': 'triton'}
)\
for layout_mode in ['dense', 'tril']
]
@triton.testing.perf_report(square_confs)
def bench_softmax(M, N, block, layout_mode, dtype, provider, warmup=10, rep=50):
Z, H = 1, 1
make_layout = {
'tril': lambda H, M, N: torch.tril(torch.ones((H, M, N), dtype=torch.int64)),
'dense': lambda H, M, N: torch.ones(H, M, N, dtype=torch.int64),
}[layout_mode]
layout = make_layout(H, M // block, N // block)
a = torch.randn((Z, H, M, N), dtype=dtype, device='cuda')
if provider == 'triton':
a = triton.testing.sparsify_tensor(a, layout, block)
op = triton.ops.blocksparse.softmax(layout, block)
ms = triton.testing.do_bench(lambda: op(a), warmup=warmup, rep=rep)
gbps = (2 * a.numel() * a.element_size() * 1e-9) / (ms * 1e-3)
return gbps

View File

@@ -0,0 +1,37 @@
import torch
import triton
confs = [
triton.testing.Benchmark(
x_names = ['N'],
x_vals = [128, 256, 512, 1024, 2048, 3072, 4096, 6144, 8192],
y_name = 'provider',
y_vals = ['triton', 'torch'],
y_lines = ['Triton', 'Torch'],
ylabel = 'GBPS',
loglog = False,
plot_name = f'{mode}-2048',
args = {'M': 2048, 'dtype': torch.float16, 'mode': mode}
)\
for mode in ['forward', 'backward']
]
@triton.testing.perf_report(confs)
def bench_op(M, N, dtype, mode, provider):
# create inputs
x = torch.randn(M, N, dtype=dtype, device='cuda', requires_grad=True)
idx = 4 + torch.ones(M, dtype=torch.int64, device='cuda')
num_gb = (2 * x.numel() * x.element_size() * 1e-9)
# forward pass
op = {'torch': torch.nn.CrossEntropyLoss(reduction='none'), \
'triton': triton.ops.cross_entropy}[provider]
if mode == 'forward':
ms = triton.testing.do_bench(lambda: op(x, idx))
if mode == 'backward':
y = op(x, idx)
dy = torch.randn_like(y)
ms = triton.testing.do_bench(lambda: y.backward(dy, retain_graph=True))
return num_gb / ms * 1e3
if __name__ == '__main__':
bench_op.run('tmp', False)

View File

@@ -0,0 +1,59 @@
import triton
import torch
# square benchmarks
nt = {False: 'n', True: 't'}
square_confs = [
triton.testing.Benchmark(
x_names = ['M', 'N', 'K'],
x_vals = [128, 256, 512, 1024, 2048, 3072, 4096, 6144],
y_name = 'provider',
y_vals = ['torch', 'triton', 'cutlass'],
y_lines = ['Torch', 'Triton', 'CUTLASS'],
ylabel = 'TFLOPS',
loglog = False,
plot_name = f'matmul-square-{nt[AT]}{nt[BT]}',
args = {'AT': False, 'BT': False, 'dtype': torch.float16}
)\
for AT in [False, True] for BT in [False, True]
]
@triton.testing.perf_report(square_confs)
def bench_op(M, N, K, AT, BT, dtype, provider, warmup=5, rep=5):
import os
a = torch.randn((K, M) if AT else (M, K), device='cuda', dtype=dtype) / K**.5
b = torch.randn((N, K) if BT else (K, N), device='cuda', dtype=dtype) / K**.5
if AT: a = a.t()
if BT: b = b.t()
num_flops = 2 * M * N * K
if provider == 'torch':
torch_ms = triton.testing.do_bench(lambda: torch.matmul(a, b), warmup=warmup, rep=rep)
torch_tflops = num_flops / torch_ms * 1e-9
return torch_tflops
if provider == 'triton':
triton_ms = triton.testing.do_bench(lambda: triton.ops.matmul(a, b), warmup=warmup, rep=rep)
triton_tflops = num_flops / triton_ms * 1e-9
return triton_tflops
if provider == 'cutlass' and 'CUTLASS_PROFILER' in os.environ:
import subprocess
import tempfile
import pandas as pd
# run program specified by CUTLASS_PROFILER env variable
layout_a = 'column' if AT else 'row'
layout_b = 'column' if BT else 'row'
# create temporary file name
fd, fname = tempfile.mkstemp()
# run program and gets its output
cmd = [os.environ['CUTLASS_PROFILER'], f'--m={M}', f'--n={N}', f'--k={K}', f'--A=f16:{layout_a}', f'--B=f16:{layout_b}', \
'--C=f16:column', '--accum=f32', '--operation=gemm', '--verification-enabled=false', f'--warmup-iterations={warmup}', \
f'--profiling-iterations={rep}', f'--output={fname}', '--verbose=false']
# run cmd
subprocess.run(cmd, stdout=subprocess.PIPE)
# read CSV output
df_c = pd.read_csv(f'{fname}.gemm.csv')
cutlass_tflops = max(df_c['GFLOPs']) / 1e3
return cutlass_tflops
return None
if __name__ == '__main__':
bench_op.run()