[PYTHON] Added automated benchmark script (#63)

This adds a bench functionality to the setup.py that can be used to run the benchmark suite and generates a bunch of csv files (and optionally plots)

python setup.py bench
python setup.py bench --with-plots
python setup.py bench --filter=cross_entropy
This commit is contained in:
Philippe Tillet
2021-02-08 12:16:41 -08:00
committed by Philippe Tillet
parent 66c94f21d7
commit 5e3c7f5a60
12 changed files with 472 additions and 339 deletions

View File

@@ -0,0 +1,59 @@
import triton
import torch
# square benchmarks
nt = {False: 'n', True: 't'}
square_confs = [
triton.testing.Benchmark(
x_names = ['M', 'N', 'K'],
x_vals = [128, 256, 512, 1024, 2048, 3072, 4096, 6144],
y_name = 'provider',
y_vals = ['torch', 'triton', 'cutlass'],
y_lines = ['Torch', 'Triton', 'CUTLASS'],
ylabel = 'TFLOPS',
loglog = False,
plot_name = f'matmul-square-{nt[AT]}{nt[BT]}',
args = {'AT': False, 'BT': False, 'dtype': torch.float16}
)\
for AT in [False, True] for BT in [False, True]
]
@triton.testing.perf_report(square_confs)
def bench_op(M, N, K, AT, BT, dtype, provider, warmup=5, rep=5):
import os
a = torch.randn((K, M) if AT else (M, K), device='cuda', dtype=dtype) / K**.5
b = torch.randn((N, K) if BT else (K, N), device='cuda', dtype=dtype) / K**.5
if AT: a = a.t()
if BT: b = b.t()
num_flops = 2 * M * N * K
if provider == 'torch':
torch_ms = triton.testing.do_bench(lambda: torch.matmul(a, b), warmup=warmup, rep=rep)
torch_tflops = num_flops / torch_ms * 1e-9
return torch_tflops
if provider == 'triton':
triton_ms = triton.testing.do_bench(lambda: triton.ops.matmul(a, b), warmup=warmup, rep=rep)
triton_tflops = num_flops / triton_ms * 1e-9
return triton_tflops
if provider == 'cutlass' and 'CUTLASS_PROFILER' in os.environ:
import subprocess
import tempfile
import pandas as pd
# run program specified by CUTLASS_PROFILER env variable
layout_a = 'column' if AT else 'row'
layout_b = 'column' if BT else 'row'
# create temporary file name
fd, fname = tempfile.mkstemp()
# run program and gets its output
cmd = [os.environ['CUTLASS_PROFILER'], f'--m={M}', f'--n={N}', f'--k={K}', f'--A=f16:{layout_a}', f'--B=f16:{layout_b}', \
'--C=f16:column', '--accum=f32', '--operation=gemm', '--verification-enabled=false', f'--warmup-iterations={warmup}', \
f'--profiling-iterations={rep}', f'--output={fname}', '--verbose=false']
# run cmd
subprocess.run(cmd, stdout=subprocess.PIPE)
# read CSV output
df_c = pd.read_csv(f'{fname}.gemm.csv')
cutlass_tflops = max(df_c['GFLOPs']) / 1e3
return cutlass_tflops
return None
if __name__ == '__main__':
bench_op.run()