[PYTHON] Added automated benchmark script (#63)

This adds a bench functionality to the setup.py that can be used to run the benchmark suite and generates a bunch of csv files (and optionally plots)

python setup.py bench
python setup.py bench --with-plots
python setup.py bench --filter=cross_entropy
This commit is contained in:
Philippe Tillet
2021-02-08 12:16:41 -08:00
committed by Philippe Tillet
parent 66c94f21d7
commit 5e3c7f5a60
12 changed files with 472 additions and 339 deletions

View File

@@ -0,0 +1,33 @@
import torch
import triton
import pytest
@pytest.mark.parametrize("M, N, dtype, mode",
[
(M, N, dtype, mode) for M in [1024, 821]
for N in [512, 857, 1871, 2089, 8573, 31000]
for dtype in ['float16', 'float32']\
for mode in ['forward', 'backward']
]
)
def test_op(M, N, dtype, mode):
dtype = {'float16': torch.float16, 'float32': torch.float32}[dtype]
# create inputs
x = torch.randn(M, N, dtype=dtype, device='cuda', requires_grad=True)
idx = 4 + torch.ones(M, dtype=torch.int64, device='cuda')
# forward pass
tt_y = triton.ops.cross_entropy(x, idx)
th_y = torch.nn.CrossEntropyLoss(reduction="none")(x, idx)
if mode == 'forward':
assert torch.allclose(th_y, tt_y, atol=1e-3, rtol=1e-2)
# backward pass
elif mode == 'backward':
dy = torch.randn_like(tt_y)
# triton backward
tt_y.backward(dy)
tt_dx = x.grad.clone()
# torch backward
x.grad.zero_()
th_y.backward(dy)
th_dx = x.grad.clone()
assert torch.allclose(th_dx, tt_dx, atol=1e-3, rtol=1e-2)