[PYTHON] Added automated benchmark script (#63)

This adds a bench functionality to the setup.py that can be used to run the benchmark suite and generates a bunch of csv files (and optionally plots)

python setup.py bench
python setup.py bench --with-plots
python setup.py bench --filter=cross_entropy
This commit is contained in:
Philippe Tillet
2021-02-08 12:16:41 -08:00
committed by Philippe Tillet
parent 66c94f21d7
commit 5e3c7f5a60
12 changed files with 472 additions and 339 deletions

78
python/triton/testing.py Normal file
View File

@@ -0,0 +1,78 @@
import torch
def sparsify_tensor(x, mask, block):
ret = torch.empty((x.size(0), mask.sum(), block, block), dtype=x.dtype, device=x.device)
for idx, (h, i, j) in enumerate(zip(*mask.nonzero(as_tuple=True))):
ret[:, idx, :, :] = x[:, h, i * block:(i + 1) * block, j * block:(j + 1) * block]
return ret
def mask_tensor(x, mask, block, value=0):
ret = x.clone()
for h, i, j in zip(*(mask == 0).nonzero(as_tuple=True)):
ret[:, h, i * block:(i + 1) * block, j * block:(j + 1) * block] = value
return ret
def allclose(x, y):
assert x.dtype == y.dtype
rtol, atol = {torch.float32: (1e-4, 1e-5), torch.float16: (1e-2, 1e-3)}[x.dtype]
return torch.allclose(x, y, atol=atol, rtol=rtol)
def do_bench(fn, flops=0, warmup=10, rep=50):
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
ret = fn()
for i in range(warmup):
fn()
torch.cuda.synchronize()
start_event.record()
for i in range(rep):
fn()
end_event.record()
torch.cuda.synchronize()
time_ms = start_event.elapsed_time(end_event) / rep
return time_ms
class Benchmark:
def __init__(self, x_names, x_vals, y_name, y_vals, y_lines, ylabel, loglog, plot_name, args):
self.x_names = x_names
self.x_vals = x_vals
self.y_name = y_name
self.y_vals = y_vals
self.y_lines = y_lines
self.ylabel = ylabel
self.loglog = loglog
self.plot_name = plot_name
self.args = args
class Mark:
def __init__(self, fn, benchmarks):
self.fn = fn
self.benchmarks = benchmarks
def _run(self, bench, result_path, with_plot):
import matplotlib.pyplot as plt
import pandas as pd
import os
df = pd.DataFrame(columns=[bench.x_names[0]] + bench.y_lines)
for x in bench.x_vals:
x_args = {x_name: x for x_name in bench.x_names}
row = [self.fn(**x_args, **{bench.y_name: y}, **bench.args) for y in bench.y_vals]
df.loc[len(df)] = [x] + row
if with_plot and bench.plot_name:
xlabel = ' = '.join(bench.x_names)
plot = df.plot(x=bench.x_names[0], y=bench.y_lines)
plot.set_xlabel(xlabel)
plot.set_ylabel(bench.ylabel)
plot.set_title(bench.plot_name)
plot.set_xscale('log' if bench.loglog else 'linear')
plot.set_yscale('log' if bench.loglog else 'linear')
plt.savefig(os.path.join(result_path, f'{bench.plot_name}.png'))
df.to_csv(os.path.join(result_path, f'{bench.plot_name}.csv'))
def run(self, result_path, with_plot):
for bench in self.benchmarks:
self._run(bench, result_path, with_plot)
def perf_report(benchmarks):
wrapper = lambda fn: Mark(fn, benchmarks)
return wrapper