[Triton-MLIR][FRONTEND] [BACKEND] fix atomics (#879)

minor fix to backend and frontend of atomics, we can pass 1 test without
mask and the shape aligned with CTA size now

Co-authored-by: dongdongl <dongdongl@nvidia.com>
This commit is contained in:
donproc
2022-11-16 12:25:15 +08:00
committed by GitHub
parent 37f5846280
commit 5eee738df7
4 changed files with 31 additions and 13 deletions

View File

@@ -5958,19 +5958,19 @@ struct AtomicRMWOpConversion
auto elemsPerThread = getElemsPerThread(val.getType());
SmallVector<Value> resultVals(elemsPerThread);
for (size_t i = 0; i < elemsPerThread; i += vec) {
Value rmvVal = undef(vecTy);
Value rmwVal = undef(vecTy);
for (int ii = 0; ii < vec; ++ii) {
Value iiVal = createIndexAttrConstant(
rewriter, loc, getTypeConverter()->getIndexType(), ii);
rmvVal = insert_element(vecTy, rmvVal, valElements[i], iiVal);
rmwVal = insert_element(vecTy, rmwVal, valElements[i + ii], iiVal);
}
Value rmwPtr = bitcast(ptrElements[i], ptr_ty(valTy.getElementType()));
Value rmwPtr = ptrElements[i];
std::string sTy;
PTXBuilder ptxBuilder;
auto *dstOpr = ptxBuilder.newOperand("=r");
auto *ptrOpr = ptxBuilder.newAddrOperand(rmwPtr, "r");
auto *valOpr = ptxBuilder.newOperand(rmvVal, "r");
auto *ptrOpr = ptxBuilder.newAddrOperand(rmwPtr, "l");
auto *valOpr = ptxBuilder.newOperand(rmwVal, "r");
auto &atom = ptxBuilder.create<>("atom")->global().o("gpu");
auto rmwOp = stringifyRMWOp(atomicRmwAttr).str();
@@ -6012,12 +6012,13 @@ struct AtomicRMWOpConversion
return failure();
}
atom.o(rmwOp).o(sTy);
atom(dstOpr, ptrOpr, valOpr);
auto ret = ptxBuilder.launch(rewriter, loc, valueElemTy, false);
//TODO:[dongdongl] actual mask support
Value pred = int_val(1, 1);
atom(dstOpr, ptrOpr, valOpr).predicate(pred);
auto ret = ptxBuilder.launch(rewriter, loc, valueElemTy);
for (int ii = 0; ii < vec; ++ii) {
resultVals[i * vec + ii] =
vec == 1 ? ret : extract_element(vecTy, ret, idx_val(ii));
vec == 1 ? ret : extract_element(valueElemTy, ret, idx_val(ii));
}
}
Type structTy = getTypeConverter()->convertType(valueTy);

View File

@@ -378,7 +378,7 @@ void populateTritonPatterns(TritonGPUTypeConverter &typeConverter,
TritonGenericPattern<triton::AddPtrOp>, TritonReducePattern,
TritonExpandDimsPattern, TritonMakeRangePattern, TritonDotPattern,
TritonLoadPattern, TritonStorePattern, TritonExtElemwisePattern,
TritonPrintfPattern>(typeConverter, context);
TritonPrintfPattern, TritonAtomicRMWPattern>(typeConverter, context);
}
//

View File

@@ -1086,9 +1086,7 @@ void init_triton_ir(py::module &&m) {
mlir::Value &ptr, mlir::Value &val,
mlir::Value &mask) -> mlir::Value {
auto loc = self.getUnknownLoc();
auto ptrType = mlir::getElementTypeOrSelf(ptr)
.cast<mlir::triton::PointerType>();
mlir::Type dstType = ptrType.getPointeeType();
mlir::Type dstType = val.getType();
return self.create<mlir::triton::AtomicRMWOp>(loc, dstType, rmwOp,
ptr, val, mask);
})

View File

@@ -671,6 +671,25 @@ def test_tuples():
# kernel[(1,)](z_tri, x_tri, axis, shape0, shape1)
# np.testing.assert_allclose(z_ref, to_numpy(z_tri), rtol=1e-4)
def test_tensor_atomic_rmw_add_elementwise(device="cuda"):
shape0, shape1 = 16, 16
@triton.jit
def kernel(Z, X, SHAPE0: tl.constexpr, SHAPE1: tl.constexpr):
off0 = tl.arange(0, SHAPE0)
off1 = tl.arange(0, SHAPE1)
x = tl.load(X + off0[:, None] * SHAPE1 + off1[None, :])
tl.atomic_add(Z + off0[:, None] * SHAPE1 + off1[None, :], x)
rs = RandomState(17)
x = numpy_random((shape0, shape1), dtype_str="float32", rs=rs)
z = numpy_random((shape0, shape1), dtype_str="float32", rs=rs)
# reference
z_ref = z + x
# triton result
x_tri = torch.from_numpy(x).to(device=device)
z_tri = torch.from_numpy(z).to(device=device)
kernel[(1,)](z_tri, x_tri, shape0, shape1)
np.testing.assert_allclose(z_ref, to_numpy(z_tri), rtol=1e-4)
# def test_atomic_cas():
# # 1. make sure that atomic_cas changes the original value (Lock)