[dnn/dot] reverted back to peak tensorcores performance

This commit is contained in:
Philippe Tillet
2019-07-16 16:14:58 -07:00
parent 164d85077f
commit 5f6dd23fc2
5 changed files with 17 additions and 31 deletions

View File

@@ -9,25 +9,23 @@ library_dir = os.path.dirname(os.path.realpath(__file__))
module = tf.load_op_library(os.path.join(library_dir, 'libtf_blocksparse.so'))
def run_dot():
M, N, K = 128,128,128
M, N, K = 8192, 8192, 8192
a = tf.placeholder(tf.float16, shape=[M, K])
b = tf.placeholder(tf.float16, shape=[N, K])
locks = tf.placeholder(tf.int32, shape=[4096])
# c = tf.matmul(a, b, transpose_a=True)
c = module.dot(a, b, locks)
c = module.dot(a, b)
# Reference
ha = np.random.rand(M, K).astype(np.float16)
hb = np.random.rand(N, K).astype(np.float16)
# Run
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
result = sess.run([c], feed_dict = {locks: np.zeros(4096),
a: ha,
result = sess.run([c], feed_dict = {a: ha,
b: hb})[0]
# Test
hresult = np.dot(ha.T, hb).T
dif = np.abs(result - hresult)
print("dif: %f" % np.max(dif))
#hresult = np.dot(ha.T, hb).T
#dif = np.abs(result - hresult)
#print("dif: %f" % np.max(dif))
def run_conv():
B, C, H, W = 16, 32, 32, 32
@@ -130,5 +128,6 @@ def run_batchnorm():
print(np.max(np.abs(dg_t - dg_n)))
print(np.max(np.abs(db_t - db_n)))
run_shift()
run_dot()
#run_shift()
#run_batchnorm()