[Triton-MLIR]Add ptx vprintf support (#825)
Not know how to write unit test for this feature. Co-authored-by: Yan Chunwei <yanchunwei@outlook.com>
This commit is contained in:
56
python/tests/printf_helper.py
Normal file
56
python/tests/printf_helper.py
Normal file
@@ -0,0 +1,56 @@
|
||||
import torch
|
||||
from torch.testing import assert_close
|
||||
|
||||
import triton
|
||||
import triton.language as tl
|
||||
|
||||
torch_type = {
|
||||
"bool": torch.bool,
|
||||
'int8': torch.int8,
|
||||
'uint8': torch.uint8,
|
||||
'int16': torch.int16,
|
||||
"int32": torch.int32,
|
||||
'int64': torch.long,
|
||||
'float16': torch.float16,
|
||||
'bfloat16': torch.bfloat16,
|
||||
"float32": torch.float32,
|
||||
"float64": torch.float64
|
||||
}
|
||||
|
||||
|
||||
def get_tensor(shape, data_type, b_positive=False):
|
||||
x = None
|
||||
if data_type.startswith('int'):
|
||||
x = torch.arange(0, shape[0], dtype=torch_type[data_type], device='cuda')
|
||||
else:
|
||||
x = torch.arange(0, shape[0], dtype=torch_type[data_type], device='cuda')
|
||||
|
||||
return x
|
||||
|
||||
# @pytest.mark.parametrize('data_type',
|
||||
# [("int8"),
|
||||
# ('int16'),
|
||||
# ('int32'),
|
||||
# ("int64"),
|
||||
# ('float16'),
|
||||
# ("float32"),
|
||||
# ("float64")])
|
||||
|
||||
|
||||
def printf(data_type):
|
||||
@triton.jit
|
||||
def kernel(X, Y, BLOCK: tl.constexpr):
|
||||
x = tl.load(X + tl.arange(0, BLOCK))
|
||||
tl.printf("", x)
|
||||
tl.store(Y + tl.arange(0, BLOCK), x)
|
||||
|
||||
shape = (128, )
|
||||
# limit the range of integers so that the sum does not overflow
|
||||
x = get_tensor(shape, data_type)
|
||||
y = torch.zeros(shape, dtype=x.dtype, device="cuda")
|
||||
kernel[(1,)](x, y, BLOCK=shape[0])
|
||||
assert_close(y, x)
|
||||
|
||||
|
||||
printf("float16")
|
||||
printf("int8")
|
Reference in New Issue
Block a user