[Triton-MLIR]Add ptx vprintf support (#825)
Not know how to write unit test for this feature. Co-authored-by: Yan Chunwei <yanchunwei@outlook.com>
This commit is contained in:
@@ -144,7 +144,7 @@ def _test_unary(dtype_x, expr, numpy_expr=None, device='cuda'):
|
||||
# triton result
|
||||
x_tri = to_triton(x, device=device, dst_type=dtype_x)
|
||||
z_tri = to_triton(np.empty_like(z_ref), device=device, dst_type=dtype_x)
|
||||
kernel[(1, )](z_tri, x_tri, SIZE=SIZE, num_warps=4)
|
||||
kernel[(1, )](z_tri, x_tri, SIZE=SIZE, num_warps=4, extern_libs={"libdevice": "/usr/local/cuda/nvvm/libdevice/libdevice.10.bc"})
|
||||
# compare
|
||||
np.testing.assert_allclose(z_ref, to_numpy(z_tri), rtol=0.01)
|
||||
|
||||
@@ -463,17 +463,12 @@ def test_unary_op(dtype_x, expr, device='cuda'):
|
||||
# # test math ops
|
||||
# # ----------------
|
||||
|
||||
# TODO: Math module
|
||||
# # @pytest.mark.parametrize("expr", [
|
||||
# # 'exp', 'log', 'cos', 'sin'
|
||||
# # ])
|
||||
|
||||
|
||||
# @pytest.mark.parametrize("expr", [
|
||||
# 'exp', 'log', 'cos', 'sin'
|
||||
# ])
|
||||
# def test_math_op(expr, device='cuda'):
|
||||
# _test_unary('float32', f'tl.{expr}(x)', f'np.{expr}(x) ', device=device)
|
||||
@pytest.mark.parametrize("expr", [
|
||||
'exp', 'log', 'cos', 'sin'
|
||||
])
|
||||
def test_math_op(expr, device='cuda'):
|
||||
_test_unary('float32', f'tl.{expr}(x)', f'np.{expr}(x) ', device=device)
|
||||
|
||||
|
||||
# # ----------------
|
||||
@@ -1545,43 +1540,43 @@ def test_num_warps_pow2():
|
||||
# # -------------
|
||||
|
||||
|
||||
# @pytest.mark.parametrize("dtype_str, expr, lib_path",
|
||||
# [('int32', 'libdevice.ffs', ''),
|
||||
# ('float32', 'libdevice.pow', '/usr/local/cuda/nvvm/libdevice/libdevice.10.bc'),
|
||||
# ('float64', 'libdevice.norm4d', '')])
|
||||
# def test_libdevice(dtype_str, expr, lib_path):
|
||||
@pytest.mark.parametrize("dtype_str, expr, lib_path",
|
||||
[('int32', 'libdevice.ffs', ''),
|
||||
('float32', 'libdevice.pow', '/usr/local/cuda/nvvm/libdevice/libdevice.10.bc'),
|
||||
('float64', 'libdevice.norm4d', '')])
|
||||
def test_libdevice(dtype_str, expr, lib_path):
|
||||
|
||||
# @triton.jit
|
||||
# def kernel(X, Y, BLOCK: tl.constexpr):
|
||||
# x = tl.load(X + tl.arange(0, BLOCK))
|
||||
# y = GENERATE_TEST_HERE
|
||||
# tl.store(Y + tl.arange(0, BLOCK), y)
|
||||
@triton.jit
|
||||
def kernel(X, Y, BLOCK: tl.constexpr):
|
||||
x = tl.load(X + tl.arange(0, BLOCK))
|
||||
y = GENERATE_TEST_HERE
|
||||
tl.store(Y + tl.arange(0, BLOCK), y)
|
||||
|
||||
# shape = (128, )
|
||||
# rs = RandomState(17)
|
||||
# # limit the range of integers so that the sum does not overflow
|
||||
# x = numpy_random(shape, dtype_str=dtype_str, rs=rs)
|
||||
shape = (128, )
|
||||
rs = RandomState(17)
|
||||
# limit the range of integers so that the sum does not overflow
|
||||
x = numpy_random(shape, dtype_str=dtype_str, rs=rs)
|
||||
|
||||
# if expr == 'libdevice.ffs':
|
||||
# kernel = patch_kernel(kernel, {'GENERATE_TEST_HERE': 'tl.libdevice.ffs(x)'})
|
||||
# y_ref = np.zeros(shape, dtype=x.dtype)
|
||||
# for i in range(shape[0]):
|
||||
# y_ref[i] = (int(x[i]) & int(-x[i])).bit_length()
|
||||
# elif expr == 'libdevice.pow':
|
||||
# # numpy does not allow negative factors in power, so we use abs()
|
||||
# x = np.abs(x)
|
||||
# kernel = patch_kernel(kernel, {'GENERATE_TEST_HERE': 'tl.libdevice.pow(x, x)'})
|
||||
# y_ref = np.power(x, x)
|
||||
# elif expr == 'libdevice.norm4d':
|
||||
# kernel = patch_kernel(kernel, {'GENERATE_TEST_HERE': 'tl.libdevice.norm4d(x, x, x, x)'})
|
||||
# y_ref = np.sqrt(4 * np.power(x, 2))
|
||||
if expr == 'libdevice.ffs':
|
||||
kernel = patch_kernel(kernel, {'GENERATE_TEST_HERE': 'tl.libdevice.ffs(x)'})
|
||||
y_ref = np.zeros(shape, dtype=x.dtype)
|
||||
for i in range(shape[0]):
|
||||
y_ref[i] = (int(x[i]) & int(-x[i])).bit_length()
|
||||
elif expr == 'libdevice.pow':
|
||||
# numpy does not allow negative factors in power, so we use abs()
|
||||
x = np.abs(x)
|
||||
kernel = patch_kernel(kernel, {'GENERATE_TEST_HERE': 'tl.libdevice.pow(x, x)'})
|
||||
y_ref = np.power(x, x)
|
||||
elif expr == 'libdevice.norm4d':
|
||||
kernel = patch_kernel(kernel, {'GENERATE_TEST_HERE': 'tl.libdevice.norm4d(x, x, x, x)'})
|
||||
y_ref = np.sqrt(4 * np.power(x, 2))
|
||||
|
||||
# x_tri = to_triton(x)
|
||||
# # triton result
|
||||
# y_tri = to_triton(numpy_random((shape[0],), dtype_str=dtype_str, rs=rs), device='cuda')
|
||||
# kernel[(1,)](x_tri, y_tri, BLOCK=shape[0], extern_libs={'libdevice': lib_path})
|
||||
# # compare
|
||||
# if expr == 'libdevice.ffs':
|
||||
# np.testing.assert_equal(y_ref, to_numpy(y_tri))
|
||||
# else:
|
||||
# np.testing.assert_allclose(y_ref, to_numpy(y_tri), rtol=0.01)
|
||||
x_tri = to_triton(x)
|
||||
# triton result
|
||||
y_tri = to_triton(numpy_random((shape[0],), dtype_str=dtype_str, rs=rs), device='cuda')
|
||||
kernel[(1,)](x_tri, y_tri, BLOCK=shape[0], extern_libs={'libdevice': lib_path})
|
||||
# compare
|
||||
if expr == 'libdevice.ffs':
|
||||
np.testing.assert_equal(y_ref, to_numpy(y_tri))
|
||||
else:
|
||||
np.testing.assert_allclose(y_ref, to_numpy(y_tri), rtol=0.01)
|
||||
|
Reference in New Issue
Block a user