Now find correct tuning configuration
This commit is contained in:
@@ -4,6 +4,7 @@
|
||||
#include "triton/driver/backend.h"
|
||||
#include "triton/driver/stream.h"
|
||||
#include "triton/runtime/jit.h"
|
||||
#include "triton/tools/bench.hpp"
|
||||
|
||||
#define EIGEN_USE_GPU
|
||||
#include "tensorflow/core/framework/op.h"
|
||||
@@ -125,30 +126,36 @@ class BlockSparseGemmOp : public OpKernel {
|
||||
triton::driver::cu_buffer dc(ctx, (CUdeviceptr)c->flat<float>().data(), false);
|
||||
triton::driver::cu_buffer dlocks(ctx, (CUdeviceptr)locks.flat<int32_t>().data(), false);
|
||||
stream->synchronize();
|
||||
// benchmark a given matrix multiplication kernel
|
||||
auto benchmark = [&](triton::driver::kernel* kernel,
|
||||
triton::jit::launch_information info) {
|
||||
// launch info
|
||||
unsigned TM = info.global_range_size[0];
|
||||
unsigned TN = info.global_range_size[1];
|
||||
unsigned nthreads = info.num_threads;
|
||||
unsigned GZ = jit.get_int("GZ");
|
||||
std::array<size_t, 3> grid = {(M + TM - 1)/TM, (N + TN - 1)/TN, GZ};
|
||||
// set argument
|
||||
kernel->setArg(0, *da.cu());
|
||||
kernel->setArg(1, *db.cu());
|
||||
kernel->setArg(2, *dc.cu());
|
||||
kernel->setArg(3, M);
|
||||
kernel->setArg(4, N);
|
||||
kernel->setArg(5, K);
|
||||
kernel->setArg(6, M);
|
||||
kernel->setArg(7, N);
|
||||
kernel->setArg(8, M);
|
||||
kernel->setArg(9, *dlocks.cu());
|
||||
kernel->setArg(10, grid[0]);
|
||||
kernel->setArg(11, grid[1]);
|
||||
stream->enqueue(kernel, grid, {nthreads, 1, 1});
|
||||
stream->synchronize();
|
||||
double ts = triton::tools::bench([&](){stream->enqueue(kernel, grid, {nthreads, 1, 1});},
|
||||
[&](){ stream->synchronize(); }, nullptr);
|
||||
return 2.*M*N*K / ts * 1e-3;
|
||||
};
|
||||
// just-in-time compile source-code
|
||||
jit.add_module("matmul", src, {8, 2, 16, 8, 2, 16, 8, 8, 2, 2, 8, 8, 8, 1});
|
||||
triton::driver::kernel* kernel = jit.get_function("matmul");
|
||||
triton::jit::launch_information info = jit.get_launch_info("matmul");
|
||||
// launch info
|
||||
unsigned TM = info.global_range_size[0];
|
||||
unsigned TN = info.global_range_size[1];
|
||||
unsigned nthreads = info.num_threads;
|
||||
unsigned GZ = jit.get_int("GZ");
|
||||
std::array<size_t, 3> grid = {(M + TM - 1)/TM, (N + TN - 1)/TN, GZ};
|
||||
// set argument
|
||||
kernel->setArg(0, *da.cu());
|
||||
kernel->setArg(1, *db.cu());
|
||||
kernel->setArg(2, *dc.cu());
|
||||
kernel->setArg(3, M);
|
||||
kernel->setArg(4, N);
|
||||
kernel->setArg(5, K);
|
||||
kernel->setArg(6, M);
|
||||
kernel->setArg(7, N);
|
||||
kernel->setArg(8, M);
|
||||
kernel->setArg(9, *dlocks.cu());
|
||||
kernel->setArg(10, grid[0]);
|
||||
kernel->setArg(11, grid[1]);
|
||||
stream->enqueue(kernel, grid, {nthreads, 1, 1});
|
||||
jit.autotune("matmul", src, benchmark);
|
||||
}
|
||||
|
||||
private:
|
||||
|
Reference in New Issue
Block a user