[Triton-IR] Added type inference and verifier for Triton-IR operations (#767)
This commit is contained in:
@@ -3,6 +3,7 @@
|
||||
#include "mlir/IR/DialectImplementation.h"
|
||||
#include "mlir/IR/OpImplementation.h"
|
||||
#include "triton/Analysis/Utility.h"
|
||||
#include "triton/Dialect/Triton/IR/Dialect.h"
|
||||
#include "triton/Dialect/TritonGPU/IR/Dialect.h"
|
||||
#include "llvm/ADT/TypeSwitch.h"
|
||||
|
||||
@@ -288,8 +289,9 @@ Attribute BlockedEncodingAttr::parse(AsmParser &parser, Type type) {
|
||||
}
|
||||
}
|
||||
|
||||
return parser.getChecked<BlockedEncodingAttr>(
|
||||
auto ret = parser.getChecked<BlockedEncodingAttr>(
|
||||
parser.getContext(), sizePerThread, threadsPerWarp, warpsPerCTA, order);
|
||||
return ret;
|
||||
}
|
||||
|
||||
void BlockedEncodingAttr::print(mlir::AsmPrinter &printer) const {
|
||||
@@ -346,27 +348,13 @@ void MmaEncodingAttr::print(AsmPrinter &printer) const {
|
||||
Attribute SliceEncodingAttr::parse(AsmParser &parser, Type type) {
|
||||
if (parser.parseLess().failed())
|
||||
return {};
|
||||
// Parse the data as a dictionary
|
||||
DictionaryAttr dict;
|
||||
if (parser.parseAttribute(dict).failed())
|
||||
NamedAttrList attrs;
|
||||
if (parser.parseOptionalAttrDict(attrs).failed())
|
||||
return {};
|
||||
if (parser.parseGreater().failed())
|
||||
return {};
|
||||
|
||||
unsigned dim = 0;
|
||||
Attribute parent;
|
||||
|
||||
for (const NamedAttribute &attr : dict) {
|
||||
if (attr.getName() == "dim") {
|
||||
if (parseUInt(parser, attr, dim, "dim").failed())
|
||||
return {};
|
||||
}
|
||||
if (attr.getName() == "parent") {
|
||||
if (parser.parseAttribute(parent).failed())
|
||||
return {};
|
||||
}
|
||||
}
|
||||
|
||||
unsigned dim = attrs.get("dim").cast<IntegerAttr>().getInt();
|
||||
Attribute parent = attrs.get("parent");
|
||||
return parser.getChecked<SliceEncodingAttr>(parser.getContext(), dim, parent);
|
||||
}
|
||||
|
||||
@@ -522,6 +510,35 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
struct TritonGPUInferLayoutInterface
|
||||
: public triton::DialectInferLayoutInterface {
|
||||
using DialectInferLayoutInterface::DialectInferLayoutInterface;
|
||||
|
||||
LogicalResult inferReduceOpEncoding(Attribute operandEncoding, int axis,
|
||||
Attribute &resultEncoding) const {
|
||||
resultEncoding = SliceEncodingAttr::get(getDialect()->getContext(), axis,
|
||||
operandEncoding);
|
||||
return success();
|
||||
}
|
||||
|
||||
LogicalResult inferExpandDimsOpEncoding(Attribute operandEncoding, int axis,
|
||||
Attribute &resultEncoding) const {
|
||||
auto sliceEncoding = operandEncoding.dyn_cast<SliceEncodingAttr>();
|
||||
if (!sliceEncoding) {
|
||||
llvm::report_fatal_error(
|
||||
"ExpandDimsOp operand encoding must be SliceEncodingAttr");
|
||||
return failure();
|
||||
}
|
||||
if (sliceEncoding.getDim() != axis) {
|
||||
llvm::report_fatal_error(
|
||||
"Incompatible slice dimension for ExpandDimsOp operand");
|
||||
return failure();
|
||||
}
|
||||
resultEncoding = sliceEncoding.getParent();
|
||||
return success();
|
||||
}
|
||||
};
|
||||
|
||||
void TritonGPUDialect::initialize() {
|
||||
addAttributes<
|
||||
#define GET_ATTRDEF_LIST
|
||||
@@ -532,6 +549,7 @@ void TritonGPUDialect::initialize() {
|
||||
#include "triton/Dialect/TritonGPU/IR/Ops.cpp.inc"
|
||||
>();
|
||||
addInterfaces<TritonGPUOpAsmInterface>();
|
||||
addInterfaces<TritonGPUInferLayoutInterface>();
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
@@ -568,4 +586,4 @@ LogicalResult TritonGPUDialect::verifyOperationAttribute(Operation *op,
|
||||
NamedAttribute attr) {
|
||||
// TODO: fill this.
|
||||
return success();
|
||||
}
|
||||
}
|
@@ -8,7 +8,6 @@ add_mlir_dialect_library(TritonGPUTransforms
|
||||
Combine.cpp
|
||||
Pipeline.cpp
|
||||
Swizzle.cpp
|
||||
Verifier.cpp
|
||||
TritonGPUConversion.cpp
|
||||
|
||||
DEPENDS
|
||||
|
@@ -1,106 +0,0 @@
|
||||
#include "triton/Dialect/TritonGPU/IR/Dialect.h"
|
||||
#include "triton/Dialect/TritonGPU/Transforms/Passes.h"
|
||||
|
||||
#include <memory>
|
||||
|
||||
using namespace mlir;
|
||||
|
||||
#define GEN_PASS_CLASSES
|
||||
#include "triton/Dialect/TritonGPU/Transforms/Passes.h.inc"
|
||||
|
||||
class TritonGPUVerifier : public TritonGPUVerifierBase<TritonGPUVerifier> {
|
||||
public:
|
||||
void runOnOperation() override {
|
||||
MLIRContext *context = &getContext();
|
||||
ModuleOp m = getOperation();
|
||||
|
||||
// The idea is similar to mlir/lib/IR/Verifier.cpp
|
||||
verifyImpl(m.getOperation());
|
||||
}
|
||||
|
||||
private:
|
||||
LogicalResult verifySingleOp(Operation *op) {
|
||||
if (auto dotOp = llvm::dyn_cast<triton::DotOp>(op)) {
|
||||
Type aType = dotOp.a().getType();
|
||||
Type bType = dotOp.b().getType();
|
||||
Type cType = dotOp.c().getType();
|
||||
Type dType = dotOp.d().getType();
|
||||
for (auto it : llvm::zip(llvm::SmallVector<Type>{aType, bType},
|
||||
llvm::SmallVector<char>{'a', 'b'})) {
|
||||
Type type = std::get<0>(it);
|
||||
char name = std::get<1>(it);
|
||||
if (auto tensorType = type.dyn_cast<RankedTensorType>()) {
|
||||
Attribute encoding = tensorType.getEncoding();
|
||||
if (!encoding)
|
||||
return dotOp.emitError() << name << " should have encoding";
|
||||
if (!encoding.isa<triton::gpu::SharedEncodingAttr>())
|
||||
return dotOp.emitError() << name << " should be of shared layout";
|
||||
} else
|
||||
return dotOp.emitError()
|
||||
<< name << "'s type should be of RankedTensorType";
|
||||
}
|
||||
|
||||
Attribute cLayout;
|
||||
for (auto it : llvm::zip(llvm::SmallVector<Type>{cType, dType},
|
||||
llvm::SmallVector<char>{'c', 'd'})) {
|
||||
Type type = std::get<0>(it);
|
||||
char name = std::get<1>(it);
|
||||
if (auto tensorType = type.dyn_cast<RankedTensorType>()) {
|
||||
Attribute encoding = tensorType.getEncoding();
|
||||
if (!encoding)
|
||||
return dotOp.emitError() << name << " should have encoding";
|
||||
if (!encoding.isa<triton::gpu::MmaEncodingAttr>() &&
|
||||
!encoding.isa<triton::gpu::BlockedEncodingAttr>())
|
||||
return dotOp.emitError()
|
||||
<< name << " should be of distributed layout";
|
||||
if (name == 'c')
|
||||
cLayout = encoding;
|
||||
else if (encoding != cLayout)
|
||||
return dotOp.emitError() << "d & c should have the same layout";
|
||||
} else
|
||||
return dotOp.emitError()
|
||||
<< name << "'s type should be of RankedTensorType";
|
||||
}
|
||||
|
||||
// signalPassFailure();
|
||||
}
|
||||
if (auto loadOp = llvm::dyn_cast<triton::LoadOp>(op)) {
|
||||
// TODO: fill this
|
||||
}
|
||||
if (auto storeOp = llvm::dyn_cast<triton::StoreOp>(op)) {
|
||||
// TODO: fill this
|
||||
}
|
||||
if (auto addptrOp = llvm::dyn_cast<triton::AddPtrOp>(op)) {
|
||||
// TODO: fill this
|
||||
}
|
||||
// Triton builtin Ops
|
||||
if (llvm::isa<triton::GetProgramIdOp, triton::GetNumProgramsOp,
|
||||
triton::MakeRangeOp>(op)) {
|
||||
// TODO: fill this
|
||||
}
|
||||
if (auto atomicRmw = llvm::dyn_cast<triton::AtomicRMWOp>(op)) {
|
||||
// TODO: fill this
|
||||
}
|
||||
if (auto atomicCas = llvm::dyn_cast<triton::AtomicCASOp>(op)) {
|
||||
// TODO: fill this
|
||||
}
|
||||
|
||||
// TODO: Arithmetic, SCF, TritonGPU ops
|
||||
return success();
|
||||
}
|
||||
|
||||
void verifyImpl(Operation *op) {
|
||||
if (verifySingleOp(op).failed())
|
||||
signalPassFailure();
|
||||
|
||||
// verify that all child regions are ok
|
||||
for (Region ®ion : op->getRegions())
|
||||
for (Block &block : region)
|
||||
for (Operation &childOp : block)
|
||||
verifyImpl(&childOp);
|
||||
}
|
||||
};
|
||||
|
||||
std::unique_ptr<Pass> mlir::createTritonGPUVerifier() {
|
||||
return std::make_unique<TritonGPUVerifier>();
|
||||
}
|
Reference in New Issue
Block a user