[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-08-26 00:49:56 +00:00
parent a1fd5d2238
commit 65cfbbabe5
167 changed files with 304 additions and 304 deletions

View File

@@ -324,13 +324,13 @@ for different problem sizes.</p>
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
3 32768.0 63.999998 63.999998
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 341.333321
6 262144.0 341.333321 384.000001
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 702.171410
9 2097152.0 722.823517 722.823517
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
@@ -339,7 +339,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 44.039 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 42.557 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -375,16 +375,16 @@ We will then compare its performance against (1) <code class="code docutils lite
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 188.321838
1 384.0 585.142862 585.142862 151.703707
2 512.0 655.360017 606.814814 156.038096
3 640.0 682.666684 640.000002 160.000000
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 158.759699
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 812.359066 405.755985 198.834951
94 12288.0 814.111783 415.661740 198.995960
95 12416.0 812.498981 412.149375 198.556711
96 12544.0 812.566838 412.971190 198.864492
97 12672.0 812.633240 412.516771 198.971549
93 12160.0 814.058574 406.179533 198.733401
94 12288.0 814.111783 416.101597 199.096718
95 12416.0 812.498981 412.149375 198.655991
96 12544.0 812.566838 412.546756 198.913776
97 12672.0 812.633240 412.097543 199.069228
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 22.304 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.007 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -568,42 +568,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 3.276800 2.978909
1 384.0 7.372800 ... 8.507077 7.899428
0 256.0 2.978909 ... 3.276800 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 37.971025 ... 39.025776 39.025776
6 1024.0 51.150050 ... 53.773130 52.428801
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 51.150050 ... 52.428801 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.109587
9 1408.0 64.138541 ... 67.305878 66.485074
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 62.929456 ... 62.061463 62.061463
12 1792.0 72.512412 ... 72.047592 71.588687
13 1920.0 69.120002 ... 70.530615 70.530615
8 1280.0 51.200001 ... 56.888887 56.888887
9 1408.0 64.138541 ... 67.305878 67.305878
10 1536.0 80.430545 ... 79.526831 79.526831
11 1664.0 63.372618 ... 62.492442 62.061463
12 1792.0 72.983276 ... 71.588687 71.588687
13 1920.0 68.776119 ... 70.530615 70.530615
14 2048.0 73.908442 ... 77.314362 76.959706
15 2176.0 83.500614 ... 85.632545 85.269692
16 2304.0 68.446623 ... 76.809875 76.076024
17 2432.0 71.305746 ... 75.018596 84.877538
15 2176.0 83.155572 ... 85.998493 85.632545
16 2304.0 68.251065 ... 76.809875 76.563695
17 2432.0 71.305746 ... 85.393507 85.134737
18 2560.0 78.019048 ... 80.908642 81.108913
19 2688.0 83.369354 ... 89.676257 88.422041
20 2816.0 83.074685 ... 83.074685 82.602666
21 2944.0 82.237674 ... 82.784108 82.921853
22 3072.0 80.430545 ... 88.197981 88.335577
23 3200.0 83.009080 ... 95.238096 94.814812
24 3328.0 82.843841 ... 84.298943 84.101981
25 3456.0 81.026701 ... 87.064328 87.252780
26 3584.0 87.042978 ... 91.470385 96.579370
27 3712.0 85.528545 ... 87.170458 88.170647
28 3840.0 84.228485 ... 92.083268 85.399230
29 3968.0 92.442373 ... 83.924734 91.096633
30 4096.0 86.259911 ... 88.417474 92.691803
19 2688.0 83.369354 ... 89.888756 89.044730
20 2816.0 83.552120 ... 83.712490 82.759409
21 2944.0 81.564701 ... 81.698415 81.832567
22 3072.0 82.062468 ... 88.473602 88.335577
23 3200.0 84.544253 ... 95.238096 95.096582
24 3328.0 83.130825 ... 84.101981 84.003845
25 3456.0 79.430113 ... 88.595129 88.400840
26 3584.0 87.296493 ... 98.160909 98.160909
27 3712.0 82.423549 ... 88.561477 85.822459
28 3840.0 84.809814 ... 92.006659 87.286505
29 3968.0 93.148045 ... 82.953048 80.917732
30 4096.0 93.045216 ... 92.884244 88.243079
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 24.833 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 25.861 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -371,7 +371,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.010 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.011 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 97.912354 303.407414
1 1536.0 351.085717 133.565214 341.333333
0 1024.0 311.088617 99.096776 307.200008
1 1536.0 351.085717 133.083026 338.201833
2 2048.0 423.724127 162.217818 325.509933
3 2560.0 465.454542 181.775141 326.808501
4 3072.0 515.580429 191.999993 317.793096
5 3584.0 551.384634 207.267476 309.410081
6 4096.0 568.231237 220.412561 299.707322
7 4608.0 498.162157 232.825259 290.267724
8 5120.0 527.381977 242.845844 287.102804
9 5632.0 538.517949 243.545956 289.438969
10 6144.0 542.117638 248.661056 285.214712
11 6656.0 528.953642 256.000009 285.257135
12 7168.0 507.469040 261.446807 287.678923
13 7680.0 479.999983 262.564106 275.104486
14 8192.0 462.607053 267.130429 284.939124
15 8704.0 417.791980 267.472468 284.987724
16 9216.0 431.157889 273.404206 288.751954
17 9728.0 439.683593 280.278512 289.667485
18 10240.0 447.650282 286.767793 290.153487
19 10752.0 428.651173 246.935876 290.922209
20 11264.0 429.104745 245.313973 286.372873
21 11776.0 422.457417 249.227509 288.391833
22 12288.0 420.701865 254.673582 294.617366
23 12800.0 414.574901 253.256381 287.640454
24 13312.0 411.711355 252.759501 289.916513
25 13824.0 405.594132 257.190689 291.543045
26 14336.0 395.021816 255.051144 287.198654
27 14848.0 384.414233 257.479779 289.481735
28 15360.0 376.932517 258.151252 286.879376
29 15872.0 367.868674 261.806182 291.006885
3 2560.0 461.954908 182.857144 326.808501
4 3072.0 511.999982 191.501303 317.793096
5 3584.0 554.941930 208.271186 308.301075
6 4096.0 568.231237 220.412561 294.323343
7 4608.0 498.162157 231.849059 291.031570
8 5120.0 525.128191 242.845844 287.102804
9 5632.0 538.517949 243.107920 291.310338
10 6144.0 544.118087 248.661056 286.322318
11 6656.0 527.207907 256.000009 286.793541
12 7168.0 505.976473 262.243907 288.644296
13 7680.0 482.513091 260.707203 277.172933
14 8192.0 460.440290 268.957600 286.600589
15 8704.0 416.958106 267.815384 284.987724
16 9216.0 428.651187 273.066667 289.507855
17 9728.0 439.683593 280.278512 288.950501
18 10240.0 447.650282 286.433562 290.153487
19 10752.0 429.364408 246.464170 290.267711
20 11264.0 429.445578 245.091565 285.767446
21 11776.0 421.826879 249.227509 288.686414
22 12288.0 420.102570 254.453844 295.207195
23 12800.0 415.696898 253.465340 288.180121
24 13312.0 412.242569 252.559690 290.179836
25 13824.0 405.098897 257.390218 292.571423
26 14336.0 397.761846 254.673567 286.481278
27 14848.0 383.586664 257.293872 289.246765
28 15360.0 374.253788 257.610071 286.433562
29 15872.0 366.982663 262.708969 291.229369
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 10.267 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 11.602 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:41.454</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:43.037</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:24.833</p></td>
<td><p>05:25.861</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:22.304</p></td>
<td><p>03:23.007</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:10.267</p></td>
<td><p>02:11.602</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:44.039</p></td>
<td><p>01:42.557</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.010</p></td>
<td><p>00:00.011</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>