[EXAMPLES] Added conv2d example

This commit is contained in:
Philippe Tillet
2020-08-06 17:28:27 -04:00
committed by Philippe Tillet
parent 46297a949f
commit 68c18238a9

View File

@@ -0,0 +1,200 @@
import torch
import triton
class _conv(torch.autograd.Function):
src = """
__global__ void conv(TYPE *A __noalias __readonly __aligned(16),
TYPE *B __noalias __readonly __aligned(16),
TYPE *C __noalias __aligned(16),
float alpha,
// equivalent matmul
int M, int N, int K,
// convolution properties
int pad_h, int pad_w, int stride_h, int stride_w,
// pointer increment
int *ADELTA,
// memory strides
int lda_z __multipleof(8), int lda_ci __multipleof(8), int lda_h __multipleof(8), int lda_w __multipleof(8),
int ldb_ci __multipleof(8), int ldb_r __multipleof(8), int ldb_s __multipleof(8), int ldb_co __multipleof(8),
int ldc_z __multipleof(8), int ldc_co __multipleof(8), int ldc_p __multipleof(8), int ldc_q __multipleof(8)) {
// prologue
int ridx = get_program_id(0);
int ridy = get_program_id(1);
int ridz = get_program_id(2);
/*
int gridx = M / TM;
int gridy = N / TN;
int rid = ridx + ridy * gridx;
ridx = rid / gridy;
ridy = rid % gridy;
*/
int rm[TM] = ridx * TM + 0 ... TM;
int rn[TN] = ridy * TN + 0 ... TN;
// reduction splitting
K = K / TZ;
int rk[TK] = ridz * K + 0 ... TK;
// unpack aggregate rows
// m = (z, p, q)
int rq[TM] = rm % QQ;
int rzp[TM] = rm / QQ;
int rp[TM] = rzp % PP;
int rz[TM] = rzp / PP;
// unpack aggregate reduction
// k = (ci, r, s)
int rs [TK] = rk % SS;
int rcir[TK] = rk / SS;
int rr [TK] = rcir % RR;
int rci [TK] = rcir / RR;
// padding / striding
int rh_0[TM] = rp * stride_h - pad_h;
int rw_0[TM] = rq * stride_w - pad_w;
int rh[TM, TK] = rh_0[:, newaxis] + rr[newaxis, :];
int rw[TM, TK] = rw_0[:, newaxis] + rs[newaxis, :];
// pointers to lhs
int offa[TM, TK] = rz [:, newaxis] * lda_z +
rci[newaxis, :] * lda_ci +
rh * lda_h +
rw * 1;
TYPE* pa[TM, TK] = A + offa;
int* padelta[TK] = ADELTA + rk;
// pointers to rhs
int offb[TK, TN] = rci[:, newaxis] * ldb_ci +
rr [:, newaxis] * ldb_r +
rs [:, newaxis] * ldb_s +
rn [newaxis, :] * 1;
TYPE* pb[TK, TN] = B + offb;
// prefetches operands
bool checka[TM, TK] = rh >= 0 && rh < HH && rw >= 0 && rw < WW;
bool checkb[TK, TN] = rk[:, newaxis] < K;
TYPE a[TM, TK] = checka ? *pa : 0;
TYPE b[TK, TN] = checkb ? *pb : 0;
// reduction loop
float acc[TM, TN] = 0;
for(int k = K; k > 0; k -= TK){
acc += a @ b;
// increment A
int adelta[TK] = *padelta;
padelta += TK;
pa += adelta[newaxis, :];
// increment B
pb += TK * ldb_s;
// bounds-checking A
rk += TK;
rs = rk % SS;
rcir = rk / SS;
rr = rcir % RR;
rh = rh_0[:, newaxis] + rr[newaxis, :];
rw = rw_0[:, newaxis] + rs[newaxis, :];
bool checka[TM, TK] = rh >= 0 && rh < HH && rw >= 0 && rw < WW;
// bounds-checking B
bool checkb[TK, TN] = k > TK;
a = checka ? *pa : 0;
b = *?(checkb)pb;
}
acc = acc * alpha;
TYPE c[TM, TN] = acc;
// epilogue
rm = ridx * TM + 0 ... TM;
rn = ridy * TN + 0 ... TN;
rq = rm % QQ;
rzp = rm / QQ;
rp = rzp % PP;
rz = rzp / PP;
int offc[TM, TN] = rz [:, newaxis] * ldc_z +
rn [newaxis, :] * ldc_co+
rp [:, newaxis] * ldc_p +
rq [:, newaxis] * 1;
TYPE* pc[TM, TN] = C + offc;
bool checkc[TM, TN] = rm[:, newaxis] < M && rn[newaxis, :] < N;
#if (TZ==1)
*?(checkc) pc = c;
#else
// accumulate partial result using spin-locks
int *plock = locks + rid;
int *pcount = plock + get_num_programs(0) * get_num_programs(1);
for(int repeat = 1; repeat == 1; repeat = atomic_cas(plock, 0, 1));
int count = *pcount;
if(count == 0)
*?(checkc) pc = c;
else
*?(checkc) pc = c + *?(checkc)pc;
atomic_xchg(pcount, (count + 1) % TZ);
atomic_xchg(plock, 0);
#endif
}
"""
kernel = dict()
@staticmethod
def unpack(IDX, CI, R, S):
s = IDX % S
cr = IDX // S
r = cr % R
ci = cr // R
return ci, r, s
@staticmethod
def forward(ctx, a, b, pad, stride, time):
# create kernel if necessary
dtype = a.dtype
# shapes
Z, CI, H, W = a.shape
_, R, S, CO = b.shape
P = (H + 2*pad[0] - R)//stride[0] + 1
Q = (W + 2*pad[1] - S)//stride[1] + 1
# compile kernel
if dtype not in _conv.kernel:
defines = {
'TYPE' : dtype,
'TM' : [64, 128],
'TN' : [64, 128],
'TK' : [8],
'TZ' : [1],
'LUTSIZE' : 4*CI*R*S,
'HH': H, 'WW': W, 'PP': P, 'QQ': Q, 'SS': S, 'RR': R,
}
idx = torch.arange(CI*R*S)
ci, r, s = _conv.unpack(idx, CI, R, S)
nci, nr, ns = _conv.unpack(idx + 8, CI, R, S)
delta = (nci - ci)*a.stride(1) + (nr - r)*a.stride(2) + (ns - s)*a.stride(3)
delta = delta.type(torch.int32).cuda()
_conv.kernel[dtype] = (delta, triton.kernel(_conv.src, num_warps=[2, 4], defines=defines))
delta, kernel = _conv.kernel[dtype]
# allocate output
c = triton.empty([Z, CO, P, Q], dtype=dtype)
# enqueue
grid = lambda opt: [triton.cdiv(Z*P*Q, opt.d('TM')),
triton.cdiv(CO, opt.d('TN'))]
time[0] = kernel(a, b, c, 1., Z*P*Q, CO, CI*R*S,
pad[0], pad[1], stride[0], stride[1],
delta,
a.stride(0), a.stride(1), a.stride(2), a.stride(3),
b.stride(0), b.stride(1), b.stride(2), b.stride(3),
c.stride(0), c.stride(1), c.stride(2), c.stride(3),
grid=grid, bench=100)
return c
conv = _conv.apply
torch.manual_seed(0)
Z, H, W, CI, CO, R, S = 1, 32, 64, 256, 2048, 3, 3
pad = (1, 1)
stride = (1, 1)
a = torch.rand((Z, CI, H, W)).cuda()
b = torch.rand((CI, R, S, CO)).cuda()
time = [None]
cc = torch.nn.functional.conv2d(a, b.permute(3,0,1,2), None, stride, pad, [1, 1])
c = conv(a, b, pad, stride, time)
print((cc - c).abs().max() / max(cc.max(), c.max()))
print(time[0], 2*Z*H*W*CI*CO*R*S/(time[0]*1e-9)*1e-12)
#zc = torch.matmul(a,b)
#zc_ = dot(a,b)