Now ATIDLAS is standalone. Everything dynamic....

This commit is contained in:
Philippe Tillet
2015-01-12 13:20:53 -05:00
parent a6de4c96be
commit 69311b7982
3845 changed files with 646893 additions and 6620 deletions

View File

@@ -2,32 +2,32 @@ from __future__ import division
import argparse, itertools, os, sys, json
import misc_tools, optimize, dataset
import pyopencl as cl
import pyviennacl as vcl
import pyatidlas as atd
import pyopencl as cl
import numpy as np
from numpy import random
from model import train_model
TYPES = { 'vector-axpy': {'template':atd.VectorAxpyTemplate,
TYPES = { 'vaxpy': {'template':atd.vaxpy,
'perf-index':lambda x: 3*x[0]*x[1][0]/x[2]*1e-9,
'perf-measure':'GB/s'},
'matrix-axpy': {'template':atd.MatrixAxpyTemplate,
'maxpy': {'template':atd.maxpy,
'perf-index':lambda x: 3*x[0]*x[1][0]*x[1][1]/x[2]*1e-9,
'perf-measure':'GB/s'},
'reduction': {'template':atd.ReductionTemplate,
'dot': {'template':atd.reduction,
'perf-index':lambda x: 2*x[0]*x[1][0]/x[2]*1e-9,
'perf-measure':'GB/s'},
'row-wise-reduction': {'template':atd.RowWiseReductionTemplate,
'gemv': {'template': {'N': atd.mreduction_rows, 'T': atd.mreduction_cols},
'perf-index':lambda x: x[0]*x[1][0]*x[1][1]/x[2]*1e-9,
'perf-measure':'GB/s'},
'matrix-product': {'template': atd.MatrixProductTemplate,
'gemm': {'template': {('N','N'): atd.mproduct_nn, ('T','N'): atd.mproduct_tn,
('N','T'): atd.mproduct_nt, ('T','T'): atd.mproduct_tt},
'perf-index': lambda x: 2*x[1][0]*x[1][1]*x[1][2]/x[2]*1e-9,
'perf-measure': 'GFLOP/s'} }
@@ -45,37 +45,32 @@ def do_tuning(args):
return list(map(T, x if isinstance(x, list) else [x]))
if(args.method=='simple'):
default_tuning_sizes = {'vector-axpy': args.blas1_size, 'reduction': args.blas1_size,
'matrix-axpy' : args.blas2_size, 'row-wise-reduction' : args.blas2_size,
'matrix-product': args.blas3_size}
default_tuning_sizes = {'vaxpy': args.blas1_size, 'dot': args.blas1_size,
'maxpy' : args.blas2_size, 'gemv' : args.blas2_size,
'gemm': args.blas3_size}
for operation in ['vector-axpy', 'reduction', 'matrix-axpy', 'row-wise-reduction', 'matrix-product']:
for operation in ['vaxpy', 'dot', 'maxpy', 'gemv', 'gemm']:
for datatype in [vcl.float32, vcl.float64]:
if operation not in args.operations and operation + '-' + datatype.__name__ not in args.operations:
for datatype in [atd.float32, atd.float64]:
dtypestr = datatype.__name__
if operation not in args.operations and operation + '-' + dtypestr not in args.operations:
continue
ctx = cl.Context([device])
ctx = vcl.backend.Context(ctx)
#Check data-type
if datatype is vcl.float64 and not device.double_fp_config:
if datatype is atd.float64 and not device.double_fp_config:
sys.stderr.write('Warning : The device ' + device.name + ' does not support double precision! Skipping ...')
continue
#Helper for execution
def execute(device, node, other_params, sizes, fname = os.devnull, parameters = None):
with vcl.Statement(node) as statement:
if parameters is not None:
TemplateType = TYPES[operation]['template']
return misc_tools.benchmark(TemplateType(TemplateType.Parameters(*parameters),*other_params), statement, device)
with open(fname, "w+") as archive:
return optimize.genetic(statement, device, TYPES[operation]['template'], lambda p: TYPES[operation]['template'](p, *other_params),
lambda t: TYPES[operation]['perf-index']([datatype().itemsize, sizes, t]), TYPES[operation]['perf-measure'], archive)
#~ #Helper for execution
def execute(symbolic, sizes, Template, parameters = None, fname = os.devnull):
if parameters is not None:
return misc_tools.benchmark(Template(*parameters), symbolic)
with open(fname, "w+") as archive:
return optimize.genetic(symbolic, Template, lambda t: TYPES[operation]['perf-index']([datatype(0).size, sizes, t]),
TYPES[operation]['perf-measure'], archive)
def log_uniform_sample(a,b):
return np.exp(np.random.uniform(low=np.log(a), high=np.log(b), size=1)).astype(int)
@@ -93,87 +88,84 @@ def do_tuning(args):
#Helper for tuning
def tune(execution_handler, a, b, dimsample, layouts, sample_method_profiles, sample_method_dataset):
print args.build_model
print('-----')
print(' '.join(map(str, ("Now tuning:", datatype.__name__, '-', operation, '-'.join(layouts), '[' + device.name, '(' + device.platform.name + ')]'))))
print(' '.join(map(str, ("Now tuning:", dtypestr, '-', operation, '-'.join(layouts), '[' + device.name, '(' + device.platform.name + ')]'))))
#Update JSON
full_operation = operation + ''.join(layouts)
if full_operation not in json_out:
json_out[full_operation] = {}
json_out[full_operation][datatype.__name__] = {}
D = json_out[full_operation][datatype.__name__]
json_out[full_operation][dtypestr] = {}
D = json_out[full_operation][dtypestr]
if args.method == 'simple':
print default_tuning_sizes[operation]
profiles = [execution_handler(map(int,default_tuning_sizes[operation]))]
else:
def compute_perf(x, t):
return TYPES[operation]['perf-index']([datatype().itemsize, x, t])
return TYPES[operation]['perf-index']([datatype(0).size, x, t])
profiles_generator = space_gen_product(a, b, args.sample_size, dimsample, sample_method_profiles)
profiles = dataset.sample_profiles(execution_handler, profiles_generator)
if args.build_model:
dataset_generator = space_gen_product(a, b, 1000, dimsample, sample_method_dataset)
X, Y, profiles = dataset.sample_dataset(os.path.join(full_operation,datatype.__name__), profiles, execution_handler, dataset_generator)
# profiles = np.loadtxt('data/'+full_operation+'/'+datatype.__name__+'/profiles.csv')
# X = np.loadtxt('data/'+full_operation+'/'+datatype.__name__+'/X.csv',ndmin=2)
# Y = np.loadtxt('data/'+full_operation+'/'+datatype.__name__+'/Y.csv',ndmin=2)
X, Y, profiles = dataset.sample_dataset(os.path.join(full_operation,dtypestr), profiles, execution_handler, dataset_generator)
# profiles = np.loadtxt('data/'+full_operation+'/'+datatype+'/profiles.csv')
# X = np.loadtxt('data/'+full_operation+'/'+datatype+'/X.csv',ndmin=2)
# Y = np.loadtxt('data/'+full_operation+'/'+datatype+'/Y.csv',ndmin=2)
clf = train_model(X, Y, profiles, TYPES[operation]['perf-measure'])
D['predictor'] = [{'children_left': e.tree_.children_left.tolist(),
'children_right': e.tree_.children_right.tolist(),
'threshold': e.tree_.threshold.astype('float64').tolist(),
'feature': e.tree_.feature.astype('float64').tolist(),
'value': e.tree_.value[:,:,0].astype('float64').tolist()} for e in clf.estimators_]
if args.viennacl_src_path:
misc_tools.update_viennacl_headers(args.viennacl_src_path, device,datatype,operation,layouts,profiles[0])
D['profiles'] = [map(int, x) for x in profiles]
Template = TYPES[operation]['template']
#Vector AXPY
if operation=='vector-axpy':
if operation=='vaxpy':
def execution_handler(sizes, fname=os.devnull, parameters=None):
x = vcl.Vector(sizes[0], context=ctx, dtype=datatype)
y = vcl.Vector(sizes[0], context=ctx, dtype=datatype)
return execute(device, vcl.Assign(y, x + y), (), sizes, fname, parameters)
x = atd.empty(sizes[0], datatype)
y = atd.empty(sizes[0], datatype)
return execute(x + y, sizes, Template, parameters, fname)
tune(execution_handler, 1e3, 2e7, 1, (),'log', 'log')
#Reduction
if operation=='reduction':
#dot
if operation=='dot':
def execution_handler(sizes, fname=os.devnull, parameters=None):
x = vcl.Vector(sizes[0], context=ctx, dtype=datatype)
y = vcl.Vector(sizes[0], context=ctx, dtype=datatype)
s = vcl.Scalar(0, context=ctx, dtype=datatype)
return execute(device, vcl.Assign(s, vcl.Dot(x,y)), (), sizes, fname, parameters)
x = atd.empty(sizes[0], datatype)
y = atd.empty(sizes[0], datatype)
s = atd.scalar(datatype)
return execute(atd.dot(x, y), sizes, Template, parameters, fname)
tune(execution_handler, 1e3, 2e7, 1, (),'log', 'log')
#Matrix AXPY
if operation=='matrix-axpy':
if operation=='maxpy':
def execution_handler(sizes, fname=os.devnull, parameters=None):
A = vcl.Matrix(sizes, context=ctx, dtype=datatype, layout=vcl.COL_MAJOR)
C = vcl.Matrix(sizes, context=ctx, dtype=datatype, layout=vcl.COL_MAJOR)
return execute(device, vcl.Assign(C,A + C), (), sizes, fname, parameters)
A = atd.empty(sizes, datatype)
C = atd.empty(sizes, datatype)
return execute(A + C, sizes, Template, parameters, fname)
tune(execution_handler, 100, 5000, 2, (),'log', 'log')
#Row-wise reduction
if operation=='row-wise-reduction':
#Row-wise dot
if operation=='gemv':
for A_trans in args.gemv_layouts:
def execution_handler(sizes, fname=os.devnull, parameters=None):
A = vcl.Matrix(sizes if A_trans=='N' else sizes[::-1], context=ctx, dtype=datatype, layout=vcl.COL_MAJOR)
x = vcl.Vector(sizes[1], context=ctx, dtype=datatype)
y = vcl.Vector(sizes[0], context=ctx, dtype=datatype)
Template = Template[A_trans]
A = atd.empty(sizes if A_trans=='N' else sizes[::-1], datatype)
x = atd.empty(sizes[1], datatype)
LHS = A if A_trans=='N' else A.T
return execute(device, vcl.Assign(y, LHS*x), (), sizes, fname, parameters)
return execute(device, atd.dot(LHS, x), sizes, Template, parameters, fname)
tune(execution_handler, 100, 5000, 2, (A_trans,),'log', 'log')
#Matrix Product
if operation=='matrix-product':
if operation=='gemm':
for L in args.gemm_layouts:
A_trans = L[0]
B_trans = L[1]
def execution_handler(sizes, fname=os.devnull, parameters=None):
A = vcl.Matrix((sizes[0], sizes[2]) if A_trans=='N' else (sizes[2],sizes[0]), context=ctx, dtype=datatype, layout=vcl.COL_MAJOR)
B = vcl.Matrix((sizes[2], sizes[1]) if B_trans=='N' else (sizes[1],sizes[2]), context=ctx, dtype=datatype, layout=vcl.COL_MAJOR)
Template = Template[A_trans, B_trans]
A = atd.empty((sizes[0], sizes[2]) if A_trans=='N' else (sizes[2], sizes[0]), datatype)
B = atd.empty((sizes[2], sizes[1]) if B_trans=='N' else (sizes[1], sizes[2]), datatype)
LHS = A if A_trans=='N' else A.T
RHS = B if B_trans=='N' else B.T
alpha = vcl.HostScalar(1.0, context=ctx, dtype = datatype)
beta = vcl.HostScalar(1.0, context=ctx, dtype = datatype)
C = vcl.Matrix((sizes[0], sizes[1]), context=ctx, dtype = datatype, layout=vcl.COL_MAJOR)
return execute(device, vcl.Assign(C,LHS*RHS*alpha + C*beta),(A_trans,B_trans), sizes, fname, parameters)
return execute(device, atd.dot(LHS, RHS),(A_trans,B_trans), sizes, fname, parameters)
tune(execution_handler, 100, 2000, 3,(A_trans,B_trans), 'linear')
json.dump(json_out, open(args.json_file,'w'))
@@ -191,7 +183,7 @@ class ArgumentsHandler:
return raw_input(help + "[" + default + "] : ") or default
self.device = add_input('Device to tune for','0')
self.operations = add_input('Operations to tune for','vector-axpy,matrix-axpy,reduction,row-wise-reduction,matrix-product-float32').split(',')
self.operations = add_input('Operations to tune for','vaxpy,maxpy,dot,gemv,gemm-float32')
self.gemm_layouts = add_input('GEMV Layouts', 'NN,NT,TN,TT')
self.gemv_layouts = add_input('GEMV Layouts', 'N,T')
self.json_file = add_input('JSON File', misc_tools.sanitize_string(devices[int(self.device)].name) + '.json')
@@ -203,7 +195,6 @@ class ArgumentsHandler:
else:
self.build_model = True
self.sample_size = 30
self.viennacl_src_path= add_input('ViennaCL src path', '')
else:
#Command line arguments
parser = argparse.ArgumentParser()
@@ -211,7 +202,7 @@ class ArgumentsHandler:
print_devices_parser = subparsers.add_parser('list-devices', help='List the devices available')
tune_parser = subparsers.add_parser('tune', help='Auto-tuning')
tune_parser.add_argument("--device", default=0, type=int)
tune_parser.add_argument("--operations", default = 'vector-axpy,matrix-axpy,reduction,row-wise-reduction,matrix-product-float32', type=str)
tune_parser.add_argument("--operations", default = 'vaxpy,maxpy,dot,gemv,gemm-float32', type=str)
tune_parser.add_argument("--gemm-layouts", default='NN,NT,TN,TT', type=str)
tune_parser.add_argument("--gemv-layouts", default='N,T', type=str)
tune_parser.add_argument("--json-file", default='', type=str)
@@ -230,13 +221,12 @@ class ArgumentsHandler:
args = parser.parse_args()
self.__dict__ = args.__dict__.copy()
#Retypes
self.operations = [self.operations] if not isinstance(self.operations, list) else self.operations
self.device = devices[int(self.device)]
if not self.json_file:
self.json_file = misc_tools.sanitize_string(self.device.name) + '.json'
self.operations = self.operations.split(',')
self.gemm_layouts = self.gemm_layouts.split(',')
self.gemv_layouts = self.gemv_layouts.split(',')
if self.method == 'simple':