Dataset generation

This commit is contained in:
Philippe Tillet
2014-09-27 20:54:17 -04:00
parent 02d39ed71b
commit 693b8b67b0
4 changed files with 210 additions and 127 deletions

View File

@@ -11,6 +11,7 @@ import pyviennacl as vcl
from pyviennacl import backend
from pyviennacl import opencl
from pyviennacl import atidlas
from dataset import generate_dataset
import utils
import vclio
@@ -45,99 +46,72 @@ TYPES = { 'vector-axpy': {'template':vcl.atidlas.VectorAxpyTemplate,
'perf-index': lambda x: 2*x[1][0]*x[1][1]*x[1][2]/x[2]*1e-9,
'perf-measure': 'GFLOP/s'} }
def parameter_space(operation):
simd = [1, 2, 4, 8]
pow2_1D = [2**k for k in range(12)]
pow2_2D = [2**i for i in range(8)]
pow2_2D_unrolled = [2**i for i in range(8)]
FetchingPolicy = vcl.atidlas.FetchingPolicy
fetch = [FetchingPolicy.FETCH_FROM_LOCAL, FetchingPolicy.FETCH_FROM_GLOBAL_CONTIGUOUS, FetchingPolicy.FETCH_FROM_GLOBAL_STRIDED]
if operation == 'vector-axpy': return [simd, pow2_1D, pow2_1D, fetch]
if operation == 'reduction': return [simd, pow2_1D, pow2_1D, fetch]
if operation == 'matrix-axpy': return [simd, pow2_2D, pow2_2D, pow2_2D, pow2_2D, fetch]
if operation == 'row-wise-reduction': return [simd, pow2_2D, pow2_2D, pow2_1D, fetch]
if operation == 'matrix-product': return [simd, pow2_2D, pow2_2D, pow2_2D, pow2_2D_unrolled, pow2_2D_unrolled, pow2_2D_unrolled, fetch, fetch, [0] + pow2_2D, [0] + pow2_2D]
def do_tuning(config_fname, spec_fname, viennacl_root):
config = ConfigObj(config_fname, configspec=spec_fname)
map_to_list = lambda T: list(map(T[0], T[1] if isinstance(T[1], list) else [T[1]]))
for operation in ['vector-axpy', 'matrix-axpy', 'row-wise-reduction', 'matrix-product']:
tmp_folder = config['tmp-folder'] if 'tmp-folder' in config else ""
if operation in config:
p = config[operation]
confdevices = p['devices']
devices = utils.DEVICES_PRESETS[confdevices] if confdevices in utils.DEVICES_PRESETS else [utils.all_devices[int(i)] for i in confdevices]
precisions = map_to_list((str, p['precision']))
datatypes = [DATATYPES[k] for k in precisions]
s = map_to_list((int, p['size']))
for datatype, device in itertools.product(datatypes, devices):
ctx = cl.Context([device])
ctx = vcl.backend.Context(ctx)
device = ctx.current_device
if datatype is vcl.float64 and not device.double_fp_config:
sys.stderr.write('Warning : The device ' + device.name + ' does not support double precision! Skipping ...')
continue
pairs = []
def execute(node, other_params):
print('-----')
print(' '.join(map(str, ("Now tuning:", datatype.__name__, '-', operation, '-'.join(other_params), '[' + device.name, '(' + device.platform.name + ')]'))))
tmp_file = os.path.join(tmp_folder, utils.sanitize_string(device.name) + "-" + datatype.__name__ + "-" + operation + '-'.join(other_params) + ".dat")
if tmp_folder:
print('Saving history to ' + tmp_file)
fname = tmp_file
else:
fname = os.devnull
with open(fname, "w+") as archive:
with vcl.Statement(node) as statement:
result = optimize.genetic(statement, ctx, TYPES[operation]['template'], lambda p: TYPES[operation]['template'](p, *other_params),
TYPES[operation]['parameter-names'], parameter_space(operation), lambda t: TYPES[operation]['perf-index']([datatype().itemsize, s, t]), TYPES[operation]['perf-measure'], archive)
if result and viennacl_root:
vclio.generate_viennacl_headers(viennacl_root, device, datatype, operation, other_params, result[1])
if operation=='vector-axpy':
x = vcl.Vector(s[0], context=ctx, dtype=datatype)
y = vcl.Vector(s[0], context=ctx, dtype=datatype)
execute(vcl.ElementProd(vcl.exp(x + y),vcl.cos(x + y)), ())
if operation=='matrix-axpy':
A = vcl.Matrix(s, context=ctx, dtype=datatype)
B = vcl.Matrix(s, context=ctx, dtype=datatype)
execute(A+B, ())
if operation=='row-wise-reduction':
layouts = map_to_list((str,p['layout']))
if 'all' in layouts:
layouts = ['N', 'T']
for A_trans in layouts:
A = vcl.Matrix(s if A_trans=='N' else s[::-1], context=ctx, dtype=datatype, layout=vcl.COL_MAJOR)
x = vcl.Vector(s[1] if A_trans=='N' else s[0], context=ctx, dtype=datatype)
LHS = A if A_trans=='N' else A.T
execute(LHS*x, ())
if operation=='matrix-product':
layouts = map_to_list((str,p['layout']))
if 'all' in layouts:
layouts = ['NN', 'NT', 'TN', 'TT']
for layout in layouts:
A_trans = layout[0]
B_trans = layout[1]
A = vcl.Matrix((s[0], s[1]) if A_trans=='N' else (s[1],s[0]), context=ctx, dtype=datatype, layout=vcl.COL_MAJOR);
B = vcl.Matrix((s[1], s[2]) if B_trans=='N' else (s[2],s[1]), context=ctx, dtype=datatype, layout=vcl.COL_MAJOR);
LHS = A if A_trans=='N' else A.T
RHS = B if B_trans=='N' else B.T
alpha = vcl.HostScalar(1.0, context=ctx, dtype = datatype)
beta = vcl.HostScalar(1.0, context=ctx, dtype = datatype)
C = vcl.Matrix((s[0], s[2]), context=ctx, dtype = datatype, layout=vcl.COL_MAJOR)
execute(vcl.Assign(C,LHS*RHS*alpha + C*beta),(A_trans, B_trans))
if operation in config:
p = config[operation]
confdevices = p['devices']
devices = utils.DEVICES_PRESETS[confdevices] if confdevices in utils.DEVICES_PRESETS else [utils.all_devices[int(i)] for i in confdevices]
precisions = map_to_list((str, p['precision']))
datatypes = [DATATYPES[k] for k in precisions]
#Iterate through the datatypes and the devices
for datatype, device in itertools.product(datatypes, devices):
ctx = cl.Context([device])
ctx = vcl.backend.Context(ctx)
device = ctx.current_device
#Check data-type
if datatype is vcl.float64 and not device.double_fp_config:
sys.stderr.write('Warning : The device ' + device.name + ' does not support double precision! Skipping ...')
continue
#Helper
def execute(node, other_params, sizes, fname = os.devnull):
print('-----')
print(' '.join(map(str, ("Now tuning:", datatype.__name__, '-', operation, '-'.join(other_params), '[' + device.name, '(' + device.platform.name + ')] for sizes', sizes))))
with open(fname, "w+") as archive:
with vcl.Statement(node) as statement:
return optimize.genetic(statement, ctx, TYPES[operation]['template'], lambda p: TYPES[operation]['template'](p, *other_params),
TYPES[operation]['parameter-names'], lambda t: TYPES[operation]['perf-index']([datatype().itemsize, sizes, t]), TYPES[operation]['perf-measure'], archive)
s = map_to_list((int, p['size']))
#Vector AXPY
if operation=='vector-axpy':
x = vcl.Vector(s[0], context=ctx, dtype=datatype)
y = vcl.Vector(s[0], context=ctx, dtype=datatype)
execute(vcl.ElementProd(vcl.exp(x + y),vcl.cos(x + y)), ())
#Matrix AXPY
if operation=='matrix-axpy':
A = vcl.Matrix(s, context=ctx, dtype=datatype)
B = vcl.Matrix(s, context=ctx, dtype=datatype)
execute(A+B, ())
#Row-wise reduction
if operation=='row-wise-reduction':
layouts = map_to_list((str,p['layout']))
if 'all' in layouts:
layouts = ['N', 'T']
for A_trans in layouts:
A = vcl.Matrix(s if A_trans=='N' else s[::-1], context=ctx, dtype=datatype, layout=vcl.COL_MAJOR)
x = vcl.Vector(s[1] if A_trans=='N' else s[0], context=ctx, dtype=datatype)
LHS = A if A_trans=='N' else A.T
execute(LHS*x, ())
#Matrix Product
if operation=='matrix-product':
layouts = map_to_list((str,p['layout']))
if 'all' in layouts:
layouts = ['NN', 'NT', 'TN', 'TT']
for layout in layouts:
def execution_handler(sizes, fname):
A_trans = layout[0]
B_trans = layout[1]
A = vcl.Matrix((sizes[0], sizes[1]) if A_trans=='N' else (sizes[1],sizes[0]), context=ctx, dtype=datatype, layout=vcl.COL_MAJOR);
B = vcl.Matrix((sizes[1], sizes[2]) if B_trans=='N' else (sizes[2],sizes[1]), context=ctx, dtype=datatype, layout=vcl.COL_MAJOR);
LHS = A if A_trans=='N' else A.T
RHS = B if B_trans=='N' else B.T
alpha = vcl.HostScalar(1.0, context=ctx, dtype = datatype)
beta = vcl.HostScalar(1.0, context=ctx, dtype = datatype)
C = vcl.Matrix((sizes[0], sizes[2]), context=ctx, dtype = datatype, layout=vcl.COL_MAJOR)
execute(vcl.Assign(C,LHS*RHS*alpha + C*beta),(A_trans, B_trans), sizes, fname)
generate_dataset(operation, execution_handler)
if __name__ == "__main__":

View File

@@ -0,0 +1,99 @@
import os
import re
import random
import numpy as np
from sklearn.neighbors.kde import KernelDensity;
def generate_dataset(operation, execution_handler):
I = 5
step = 64;
max_size = 4000;
#Retrieves the existing data
print "Retrieving data..."
path = "./data"
files = os.listdir(path)
X = np.empty((len(files),3))
t = np.empty(len(files))
profiles = []
nonemptyfiles = []
for i,fname in enumerate(files):
if os.path.getsize(os.path.join(path,fname))>0:
nonemptyfiles.append(fname)
files = nonemptyfiles
for i,fname in enumerate(files):
MNK = re.search(r"([0-9]+)-([0-9]+)-([0-9]+).csv", fname)
fl = open(os.path.join(path,fname),"rb")
A = np.loadtxt(fl,delimiter=',')
x = np.array([MNK.group(1), MNK.group(2), MNK.group(3)]).astype(float)
y = tuple(A[np.argmin(A[:,0]),1:])
if y not in profiles:
profiles.append(y)
idx = profiles.index(y)
X[i,:] = x
t[i] = idx
#Generates new data
print "Generating new data..."
kdes = [KernelDensity(kernel='gaussian', bandwidth=2*step).fit(X[t==i,:]) for i in range(int(max(t))+1)] if files else [];
X.resize((len(files)+I, 3), refcheck=False);
t.resize(len(files)+I, refcheck=False);
max_square = max_size/step
for i in range(I):
n_per_label = np.bincount(t[0:i+1].astype(int));
Xtuples = [tuple(x) for x in X];
r = random.random();
while(True):
if(len(kdes)==0 or r<=1.0/len(kdes)):
x = np.array([step*random.randint(1,40), step*random.randint(1,40), step*random.randint(1,40)]);
else:
probs = (1.0/n_per_label)
distr = np.random.choice(range(n_per_label.size), p = probs/np.sum(probs))
x = kdes[distr].sample()[0]
x = np.maximum(np.ones(x.shape),(x - step/2).astype(int)/step + 1)*step
if tuple(x) not in Xtuples:
break;
x = x.astype(int)
x = [2048, 2048, 512]
fname = os.path.join(path, `x[0]` +"-"+ `x[1]` +"-"+ `x[2]` +".csv")
#Execute auto-tuning procedure
execution_handler(x, fname)
#Load csv into matrix
fl = open(fname,"rb");
A = np.loadtxt(fl,delimiter=',');
#Update the kernel density estimators
y = tuple(A[np.argmin(A[:,0]),1:]);
if y not in profiles:
profiles.append(y);
kdes.append(KernelDensity(kernel='gaussian', bandwidth=2*step));
idx = profiles.index(y);
#Update data
X[len(files)+i,:] = x;
t[len(files)+i] = idx;
#Update density estimator p(M,N,K | t=idx)
kdes[idx].fit(X[t[0:len(files)+i+1]==idx,:]);
print "Exporting data...";
#Shuffle the list of file
files = os.listdir(path)
random.shuffle(files)
X = np.empty((len(files),3))
Y = np.zeros((len(files), len(profiles)))
for i,fname in enumerate(files):
MNK = re.search(r"([0-9]+)-([0-9]+)-([0-9]+).csv", fname)
X[i,:] = map(float,[MNK.group(k) for k in range(1,4)])
fl = open(os.path.join(path,fname),"rb");
A = np.loadtxt(fl,delimiter=',')
for j,y in enumerate(profiles):
idx = np.where(np.all(A[:,1:]==y,axis=1))[0]
if idx.size:
Y[i,j] = 2*1e-9*X[i,0]*X[i,1]*X[i,2]/A[idx[0],0]
else:
sys.exit('Data invalid! Were all the data csv files generated using the same auto-tuner options?')
np.savetxt(export_path+'X.csv', X)
np.savetxt(export_path+'Y.csv', Y)
np.savetxt(export_path+'profiles.csv', profiles)
open(export_path+'pad.csv', 'w').write(str(pad))

View File

@@ -13,12 +13,6 @@ from deap import tools as deap_tools
from collections import OrderedDict as odict
def hamming_distance(ind1, ind2):
res = 0
for x,y in enumerate(ind1, ind2):
if x==y:
res = res + 1
return res
def closest_divisor(N, x):
x_low=x_high=max(1,min(round(x),N))
@@ -39,16 +33,16 @@ def b_gray_to_bin(A='00000000', endian='big'):
class GeneticOperators(object):
def __init__(self, device, statement, parameters, parameter_names, TemplateType, build_template):
def __init__(self, device, statement, parameter_names, TemplateType, build_template, out):
self.device = device
self.statement = statement
self.parameters = parameters
self.parameter_names = parameter_names
self.TemplateType = TemplateType
self.ParameterType = TemplateType.Parameters
self.build_template = build_template
self.cache = {}
self.indpb = 0.05
self.out = out
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, fitness=creator.FitnessMin)
@@ -108,7 +102,7 @@ class GeneticOperators(object):
while True:
new_individual = copy.deepcopy(individual)
for i in range(len(new_individual)):
if i < 2 and random.random() < 0.2:
if i < 2 and random.random() < self.indpb:
while new_individual[i] == individual[i]:
new_individual[i] = random.randint(0, 2)
elif i >= 2 and random.random() < self.indpb:
@@ -122,10 +116,12 @@ class GeneticOperators(object):
def evaluate(self, individual):
if tuple(individual) not in self.cache:
parameters = self.decode(individual)
parameters = self.decode(individual)
template = self.build_template(self.TemplateType.Parameters(*parameters))
try:
self.cache[tuple(individual)] = tools.benchmark(template, self.statement, self.device)
tt = tools.benchmark(template, self.statement, self.device)
self.out.write(','.join([str(tt)]+map(str,map(int,parameters)))+'\n')
self.cache[tuple(individual)] = tt
except:
self.cache[tuple(individual)] = 10
return self.cache[tuple(individual)],

View File

@@ -9,31 +9,45 @@ import deap.tools
from genetic import GeneticOperators
def exhaustive(statement, context, TemplateType, build_template, parameter_names, all_parameters, compute_perf, perf_metric, out):
device = context.devices[0]
nvalid = 0
current = 0
minT = float('inf')
for individual in itertools.product(*all_parameters):
template = build_template(TemplateType.Parameters(*individual))
if not tools.skip(template, statement, device):
nvalid = nvalid + 1
for individual in itertools.product(*all_parameters):
template = build_template(TemplateType.Parameters(*individual))
try:
T = tools.benchmark(template,statement,device)
current = current + 1
if T < minT:
minT = T
best = individual
sys.stdout.write('%d / %d , Best is %d %s for %s\r'%(current, nvalid, compute_perf(minT), perf_metric, best))
sys.stdout.flush()
except:
pass
sys.stdout.write('\n')
sys.stdout.flush()
#~ def parameter_space(operation):
#~ simd = [1, 2, 4, 8]
#~ pow2_1D = [2**k for k in range(12)]
#~ pow2_2D = [2**i for i in range(8)]
#~ pow2_2D_unrolled = [2**i for i in range(8)]
#~ FetchingPolicy = vcl.atidlas.FetchingPolicy
#~ fetch = [FetchingPolicy.FETCH_FROM_LOCAL, FetchingPolicy.FETCH_FROM_GLOBAL_CONTIGUOUS, FetchingPolicy.FETCH_FROM_GLOBAL_STRIDED]
#~ if operation == 'vector-axpy': return [simd, pow2_1D, pow2_1D, fetch]
#~ if operation == 'reduction': return [simd, pow2_1D, pow2_1D, fetch]
#~ if operation == 'matrix-axpy': return [simd, pow2_2D, pow2_2D, pow2_2D, pow2_2D, fetch]
#~ if operation == 'row-wise-reduction': return [simd, pow2_2D, pow2_2D, pow2_1D, fetch]
#~ if operation == 'matrix-product': return [simd, pow2_2D, pow2_2D, pow2_2D, pow2_2D_unrolled, pow2_2D_unrolled, pow2_2D_unrolled, fetch, fetch, [0] + pow2_2D, [0] + pow2_2D]
#~
def genetic(statement, context, TemplateType, build_template, parameter_names, all_parameters, compute_perf, perf_metric, out):
GA = GeneticOperators(context.devices[0], statement, all_parameters, parameter_names, TemplateType, build_template)
GA.optimize(maxtime='5m0s', maxgen=1000, compute_perf=compute_perf, perf_metric=perf_metric)
#~ def exhaustive(statement, context, TemplateType, build_template, parameter_names, all_parameters, compute_perf, perf_metric, out):
#~ device = context.devices[0]
#~ nvalid = 0
#~ current = 0
#~ minT = float('inf')
#~ for individual in itertools.product(*all_parameters):
#~ template = build_template(TemplateType.Parameters(*individual))
#~ if not tools.skip(template, statement, device):
#~ nvalid = nvalid + 1
#~ for individual in itertools.product(*all_parameters):
#~ template = build_template(TemplateType.Parameters(*individual))
#~ try:
#~ T = tools.benchmark(template,statement,device)
#~ current = current + 1
#~ if T < minT:
#~ minT = T
#~ best = individual
#~ sys.stdout.write('%d / %d , Best is %d %s for %s\r'%(current, nvalid, compute_perf(minT), perf_metric, best))
#~ sys.stdout.flush()
#~ except:
#~ pass
#~ sys.stdout.write('\n')
#~ sys.stdout.flush()
#~
def genetic(statement, context, TemplateType, build_template, parameter_names, compute_perf, perf_metric, out):
GA = GeneticOperators(context.devices[0], statement, parameter_names, TemplateType, build_template, out)
GA.optimize(maxtime='2m30s', maxgen=1000, compute_perf=compute_perf, perf_metric=perf_metric)