Dataset generation
This commit is contained in:
@@ -11,6 +11,7 @@ import pyviennacl as vcl
|
||||
from pyviennacl import backend
|
||||
from pyviennacl import opencl
|
||||
from pyviennacl import atidlas
|
||||
from dataset import generate_dataset
|
||||
|
||||
import utils
|
||||
import vclio
|
||||
@@ -45,99 +46,72 @@ TYPES = { 'vector-axpy': {'template':vcl.atidlas.VectorAxpyTemplate,
|
||||
'perf-index': lambda x: 2*x[1][0]*x[1][1]*x[1][2]/x[2]*1e-9,
|
||||
'perf-measure': 'GFLOP/s'} }
|
||||
|
||||
def parameter_space(operation):
|
||||
simd = [1, 2, 4, 8]
|
||||
pow2_1D = [2**k for k in range(12)]
|
||||
pow2_2D = [2**i for i in range(8)]
|
||||
pow2_2D_unrolled = [2**i for i in range(8)]
|
||||
FetchingPolicy = vcl.atidlas.FetchingPolicy
|
||||
fetch = [FetchingPolicy.FETCH_FROM_LOCAL, FetchingPolicy.FETCH_FROM_GLOBAL_CONTIGUOUS, FetchingPolicy.FETCH_FROM_GLOBAL_STRIDED]
|
||||
if operation == 'vector-axpy': return [simd, pow2_1D, pow2_1D, fetch]
|
||||
if operation == 'reduction': return [simd, pow2_1D, pow2_1D, fetch]
|
||||
if operation == 'matrix-axpy': return [simd, pow2_2D, pow2_2D, pow2_2D, pow2_2D, fetch]
|
||||
if operation == 'row-wise-reduction': return [simd, pow2_2D, pow2_2D, pow2_1D, fetch]
|
||||
if operation == 'matrix-product': return [simd, pow2_2D, pow2_2D, pow2_2D, pow2_2D_unrolled, pow2_2D_unrolled, pow2_2D_unrolled, fetch, fetch, [0] + pow2_2D, [0] + pow2_2D]
|
||||
|
||||
def do_tuning(config_fname, spec_fname, viennacl_root):
|
||||
|
||||
config = ConfigObj(config_fname, configspec=spec_fname)
|
||||
map_to_list = lambda T: list(map(T[0], T[1] if isinstance(T[1], list) else [T[1]]))
|
||||
|
||||
for operation in ['vector-axpy', 'matrix-axpy', 'row-wise-reduction', 'matrix-product']:
|
||||
|
||||
tmp_folder = config['tmp-folder'] if 'tmp-folder' in config else ""
|
||||
|
||||
if operation in config:
|
||||
p = config[operation]
|
||||
confdevices = p['devices']
|
||||
devices = utils.DEVICES_PRESETS[confdevices] if confdevices in utils.DEVICES_PRESETS else [utils.all_devices[int(i)] for i in confdevices]
|
||||
precisions = map_to_list((str, p['precision']))
|
||||
datatypes = [DATATYPES[k] for k in precisions]
|
||||
s = map_to_list((int, p['size']))
|
||||
|
||||
for datatype, device in itertools.product(datatypes, devices):
|
||||
ctx = cl.Context([device])
|
||||
ctx = vcl.backend.Context(ctx)
|
||||
device = ctx.current_device
|
||||
|
||||
if datatype is vcl.float64 and not device.double_fp_config:
|
||||
sys.stderr.write('Warning : The device ' + device.name + ' does not support double precision! Skipping ...')
|
||||
continue
|
||||
|
||||
pairs = []
|
||||
|
||||
def execute(node, other_params):
|
||||
print('-----')
|
||||
print(' '.join(map(str, ("Now tuning:", datatype.__name__, '-', operation, '-'.join(other_params), '[' + device.name, '(' + device.platform.name + ')]'))))
|
||||
tmp_file = os.path.join(tmp_folder, utils.sanitize_string(device.name) + "-" + datatype.__name__ + "-" + operation + '-'.join(other_params) + ".dat")
|
||||
if tmp_folder:
|
||||
print('Saving history to ' + tmp_file)
|
||||
fname = tmp_file
|
||||
else:
|
||||
fname = os.devnull
|
||||
with open(fname, "w+") as archive:
|
||||
with vcl.Statement(node) as statement:
|
||||
result = optimize.genetic(statement, ctx, TYPES[operation]['template'], lambda p: TYPES[operation]['template'](p, *other_params),
|
||||
TYPES[operation]['parameter-names'], parameter_space(operation), lambda t: TYPES[operation]['perf-index']([datatype().itemsize, s, t]), TYPES[operation]['perf-measure'], archive)
|
||||
if result and viennacl_root:
|
||||
vclio.generate_viennacl_headers(viennacl_root, device, datatype, operation, other_params, result[1])
|
||||
|
||||
if operation=='vector-axpy':
|
||||
x = vcl.Vector(s[0], context=ctx, dtype=datatype)
|
||||
y = vcl.Vector(s[0], context=ctx, dtype=datatype)
|
||||
execute(vcl.ElementProd(vcl.exp(x + y),vcl.cos(x + y)), ())
|
||||
|
||||
if operation=='matrix-axpy':
|
||||
A = vcl.Matrix(s, context=ctx, dtype=datatype)
|
||||
B = vcl.Matrix(s, context=ctx, dtype=datatype)
|
||||
execute(A+B, ())
|
||||
|
||||
if operation=='row-wise-reduction':
|
||||
layouts = map_to_list((str,p['layout']))
|
||||
if 'all' in layouts:
|
||||
layouts = ['N', 'T']
|
||||
for A_trans in layouts:
|
||||
A = vcl.Matrix(s if A_trans=='N' else s[::-1], context=ctx, dtype=datatype, layout=vcl.COL_MAJOR)
|
||||
x = vcl.Vector(s[1] if A_trans=='N' else s[0], context=ctx, dtype=datatype)
|
||||
LHS = A if A_trans=='N' else A.T
|
||||
execute(LHS*x, ())
|
||||
|
||||
if operation=='matrix-product':
|
||||
layouts = map_to_list((str,p['layout']))
|
||||
if 'all' in layouts:
|
||||
layouts = ['NN', 'NT', 'TN', 'TT']
|
||||
for layout in layouts:
|
||||
A_trans = layout[0]
|
||||
B_trans = layout[1]
|
||||
|
||||
A = vcl.Matrix((s[0], s[1]) if A_trans=='N' else (s[1],s[0]), context=ctx, dtype=datatype, layout=vcl.COL_MAJOR);
|
||||
B = vcl.Matrix((s[1], s[2]) if B_trans=='N' else (s[2],s[1]), context=ctx, dtype=datatype, layout=vcl.COL_MAJOR);
|
||||
LHS = A if A_trans=='N' else A.T
|
||||
RHS = B if B_trans=='N' else B.T
|
||||
alpha = vcl.HostScalar(1.0, context=ctx, dtype = datatype)
|
||||
beta = vcl.HostScalar(1.0, context=ctx, dtype = datatype)
|
||||
C = vcl.Matrix((s[0], s[2]), context=ctx, dtype = datatype, layout=vcl.COL_MAJOR)
|
||||
execute(vcl.Assign(C,LHS*RHS*alpha + C*beta),(A_trans, B_trans))
|
||||
if operation in config:
|
||||
p = config[operation]
|
||||
confdevices = p['devices']
|
||||
devices = utils.DEVICES_PRESETS[confdevices] if confdevices in utils.DEVICES_PRESETS else [utils.all_devices[int(i)] for i in confdevices]
|
||||
precisions = map_to_list((str, p['precision']))
|
||||
datatypes = [DATATYPES[k] for k in precisions]
|
||||
#Iterate through the datatypes and the devices
|
||||
for datatype, device in itertools.product(datatypes, devices):
|
||||
ctx = cl.Context([device])
|
||||
ctx = vcl.backend.Context(ctx)
|
||||
device = ctx.current_device
|
||||
#Check data-type
|
||||
if datatype is vcl.float64 and not device.double_fp_config:
|
||||
sys.stderr.write('Warning : The device ' + device.name + ' does not support double precision! Skipping ...')
|
||||
continue
|
||||
#Helper
|
||||
def execute(node, other_params, sizes, fname = os.devnull):
|
||||
print('-----')
|
||||
print(' '.join(map(str, ("Now tuning:", datatype.__name__, '-', operation, '-'.join(other_params), '[' + device.name, '(' + device.platform.name + ')] for sizes', sizes))))
|
||||
with open(fname, "w+") as archive:
|
||||
with vcl.Statement(node) as statement:
|
||||
return optimize.genetic(statement, ctx, TYPES[operation]['template'], lambda p: TYPES[operation]['template'](p, *other_params),
|
||||
TYPES[operation]['parameter-names'], lambda t: TYPES[operation]['perf-index']([datatype().itemsize, sizes, t]), TYPES[operation]['perf-measure'], archive)
|
||||
s = map_to_list((int, p['size']))
|
||||
#Vector AXPY
|
||||
if operation=='vector-axpy':
|
||||
x = vcl.Vector(s[0], context=ctx, dtype=datatype)
|
||||
y = vcl.Vector(s[0], context=ctx, dtype=datatype)
|
||||
execute(vcl.ElementProd(vcl.exp(x + y),vcl.cos(x + y)), ())
|
||||
#Matrix AXPY
|
||||
if operation=='matrix-axpy':
|
||||
A = vcl.Matrix(s, context=ctx, dtype=datatype)
|
||||
B = vcl.Matrix(s, context=ctx, dtype=datatype)
|
||||
execute(A+B, ())
|
||||
#Row-wise reduction
|
||||
if operation=='row-wise-reduction':
|
||||
layouts = map_to_list((str,p['layout']))
|
||||
if 'all' in layouts:
|
||||
layouts = ['N', 'T']
|
||||
for A_trans in layouts:
|
||||
A = vcl.Matrix(s if A_trans=='N' else s[::-1], context=ctx, dtype=datatype, layout=vcl.COL_MAJOR)
|
||||
x = vcl.Vector(s[1] if A_trans=='N' else s[0], context=ctx, dtype=datatype)
|
||||
LHS = A if A_trans=='N' else A.T
|
||||
execute(LHS*x, ())
|
||||
#Matrix Product
|
||||
if operation=='matrix-product':
|
||||
layouts = map_to_list((str,p['layout']))
|
||||
if 'all' in layouts:
|
||||
layouts = ['NN', 'NT', 'TN', 'TT']
|
||||
for layout in layouts:
|
||||
def execution_handler(sizes, fname):
|
||||
A_trans = layout[0]
|
||||
B_trans = layout[1]
|
||||
A = vcl.Matrix((sizes[0], sizes[1]) if A_trans=='N' else (sizes[1],sizes[0]), context=ctx, dtype=datatype, layout=vcl.COL_MAJOR);
|
||||
B = vcl.Matrix((sizes[1], sizes[2]) if B_trans=='N' else (sizes[2],sizes[1]), context=ctx, dtype=datatype, layout=vcl.COL_MAJOR);
|
||||
LHS = A if A_trans=='N' else A.T
|
||||
RHS = B if B_trans=='N' else B.T
|
||||
alpha = vcl.HostScalar(1.0, context=ctx, dtype = datatype)
|
||||
beta = vcl.HostScalar(1.0, context=ctx, dtype = datatype)
|
||||
C = vcl.Matrix((sizes[0], sizes[2]), context=ctx, dtype = datatype, layout=vcl.COL_MAJOR)
|
||||
execute(vcl.Assign(C,LHS*RHS*alpha + C*beta),(A_trans, B_trans), sizes, fname)
|
||||
generate_dataset(operation, execution_handler)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
Reference in New Issue
Block a user