Dataset generation
This commit is contained in:
@@ -11,6 +11,7 @@ import pyviennacl as vcl
|
|||||||
from pyviennacl import backend
|
from pyviennacl import backend
|
||||||
from pyviennacl import opencl
|
from pyviennacl import opencl
|
||||||
from pyviennacl import atidlas
|
from pyviennacl import atidlas
|
||||||
|
from dataset import generate_dataset
|
||||||
|
|
||||||
import utils
|
import utils
|
||||||
import vclio
|
import vclio
|
||||||
@@ -45,73 +46,45 @@ TYPES = { 'vector-axpy': {'template':vcl.atidlas.VectorAxpyTemplate,
|
|||||||
'perf-index': lambda x: 2*x[1][0]*x[1][1]*x[1][2]/x[2]*1e-9,
|
'perf-index': lambda x: 2*x[1][0]*x[1][1]*x[1][2]/x[2]*1e-9,
|
||||||
'perf-measure': 'GFLOP/s'} }
|
'perf-measure': 'GFLOP/s'} }
|
||||||
|
|
||||||
def parameter_space(operation):
|
|
||||||
simd = [1, 2, 4, 8]
|
|
||||||
pow2_1D = [2**k for k in range(12)]
|
|
||||||
pow2_2D = [2**i for i in range(8)]
|
|
||||||
pow2_2D_unrolled = [2**i for i in range(8)]
|
|
||||||
FetchingPolicy = vcl.atidlas.FetchingPolicy
|
|
||||||
fetch = [FetchingPolicy.FETCH_FROM_LOCAL, FetchingPolicy.FETCH_FROM_GLOBAL_CONTIGUOUS, FetchingPolicy.FETCH_FROM_GLOBAL_STRIDED]
|
|
||||||
if operation == 'vector-axpy': return [simd, pow2_1D, pow2_1D, fetch]
|
|
||||||
if operation == 'reduction': return [simd, pow2_1D, pow2_1D, fetch]
|
|
||||||
if operation == 'matrix-axpy': return [simd, pow2_2D, pow2_2D, pow2_2D, pow2_2D, fetch]
|
|
||||||
if operation == 'row-wise-reduction': return [simd, pow2_2D, pow2_2D, pow2_1D, fetch]
|
|
||||||
if operation == 'matrix-product': return [simd, pow2_2D, pow2_2D, pow2_2D, pow2_2D_unrolled, pow2_2D_unrolled, pow2_2D_unrolled, fetch, fetch, [0] + pow2_2D, [0] + pow2_2D]
|
|
||||||
|
|
||||||
def do_tuning(config_fname, spec_fname, viennacl_root):
|
def do_tuning(config_fname, spec_fname, viennacl_root):
|
||||||
|
|
||||||
config = ConfigObj(config_fname, configspec=spec_fname)
|
config = ConfigObj(config_fname, configspec=spec_fname)
|
||||||
map_to_list = lambda T: list(map(T[0], T[1] if isinstance(T[1], list) else [T[1]]))
|
map_to_list = lambda T: list(map(T[0], T[1] if isinstance(T[1], list) else [T[1]]))
|
||||||
|
|
||||||
for operation in ['vector-axpy', 'matrix-axpy', 'row-wise-reduction', 'matrix-product']:
|
for operation in ['vector-axpy', 'matrix-axpy', 'row-wise-reduction', 'matrix-product']:
|
||||||
|
|
||||||
tmp_folder = config['tmp-folder'] if 'tmp-folder' in config else ""
|
|
||||||
|
|
||||||
if operation in config:
|
if operation in config:
|
||||||
p = config[operation]
|
p = config[operation]
|
||||||
confdevices = p['devices']
|
confdevices = p['devices']
|
||||||
devices = utils.DEVICES_PRESETS[confdevices] if confdevices in utils.DEVICES_PRESETS else [utils.all_devices[int(i)] for i in confdevices]
|
devices = utils.DEVICES_PRESETS[confdevices] if confdevices in utils.DEVICES_PRESETS else [utils.all_devices[int(i)] for i in confdevices]
|
||||||
precisions = map_to_list((str, p['precision']))
|
precisions = map_to_list((str, p['precision']))
|
||||||
datatypes = [DATATYPES[k] for k in precisions]
|
datatypes = [DATATYPES[k] for k in precisions]
|
||||||
s = map_to_list((int, p['size']))
|
#Iterate through the datatypes and the devices
|
||||||
|
|
||||||
for datatype, device in itertools.product(datatypes, devices):
|
for datatype, device in itertools.product(datatypes, devices):
|
||||||
ctx = cl.Context([device])
|
ctx = cl.Context([device])
|
||||||
ctx = vcl.backend.Context(ctx)
|
ctx = vcl.backend.Context(ctx)
|
||||||
device = ctx.current_device
|
device = ctx.current_device
|
||||||
|
#Check data-type
|
||||||
if datatype is vcl.float64 and not device.double_fp_config:
|
if datatype is vcl.float64 and not device.double_fp_config:
|
||||||
sys.stderr.write('Warning : The device ' + device.name + ' does not support double precision! Skipping ...')
|
sys.stderr.write('Warning : The device ' + device.name + ' does not support double precision! Skipping ...')
|
||||||
continue
|
continue
|
||||||
|
#Helper
|
||||||
pairs = []
|
def execute(node, other_params, sizes, fname = os.devnull):
|
||||||
|
|
||||||
def execute(node, other_params):
|
|
||||||
print('-----')
|
print('-----')
|
||||||
print(' '.join(map(str, ("Now tuning:", datatype.__name__, '-', operation, '-'.join(other_params), '[' + device.name, '(' + device.platform.name + ')]'))))
|
print(' '.join(map(str, ("Now tuning:", datatype.__name__, '-', operation, '-'.join(other_params), '[' + device.name, '(' + device.platform.name + ')] for sizes', sizes))))
|
||||||
tmp_file = os.path.join(tmp_folder, utils.sanitize_string(device.name) + "-" + datatype.__name__ + "-" + operation + '-'.join(other_params) + ".dat")
|
|
||||||
if tmp_folder:
|
|
||||||
print('Saving history to ' + tmp_file)
|
|
||||||
fname = tmp_file
|
|
||||||
else:
|
|
||||||
fname = os.devnull
|
|
||||||
with open(fname, "w+") as archive:
|
with open(fname, "w+") as archive:
|
||||||
with vcl.Statement(node) as statement:
|
with vcl.Statement(node) as statement:
|
||||||
result = optimize.genetic(statement, ctx, TYPES[operation]['template'], lambda p: TYPES[operation]['template'](p, *other_params),
|
return optimize.genetic(statement, ctx, TYPES[operation]['template'], lambda p: TYPES[operation]['template'](p, *other_params),
|
||||||
TYPES[operation]['parameter-names'], parameter_space(operation), lambda t: TYPES[operation]['perf-index']([datatype().itemsize, s, t]), TYPES[operation]['perf-measure'], archive)
|
TYPES[operation]['parameter-names'], lambda t: TYPES[operation]['perf-index']([datatype().itemsize, sizes, t]), TYPES[operation]['perf-measure'], archive)
|
||||||
if result and viennacl_root:
|
s = map_to_list((int, p['size']))
|
||||||
vclio.generate_viennacl_headers(viennacl_root, device, datatype, operation, other_params, result[1])
|
#Vector AXPY
|
||||||
|
|
||||||
if operation=='vector-axpy':
|
if operation=='vector-axpy':
|
||||||
x = vcl.Vector(s[0], context=ctx, dtype=datatype)
|
x = vcl.Vector(s[0], context=ctx, dtype=datatype)
|
||||||
y = vcl.Vector(s[0], context=ctx, dtype=datatype)
|
y = vcl.Vector(s[0], context=ctx, dtype=datatype)
|
||||||
execute(vcl.ElementProd(vcl.exp(x + y),vcl.cos(x + y)), ())
|
execute(vcl.ElementProd(vcl.exp(x + y),vcl.cos(x + y)), ())
|
||||||
|
#Matrix AXPY
|
||||||
if operation=='matrix-axpy':
|
if operation=='matrix-axpy':
|
||||||
A = vcl.Matrix(s, context=ctx, dtype=datatype)
|
A = vcl.Matrix(s, context=ctx, dtype=datatype)
|
||||||
B = vcl.Matrix(s, context=ctx, dtype=datatype)
|
B = vcl.Matrix(s, context=ctx, dtype=datatype)
|
||||||
execute(A+B, ())
|
execute(A+B, ())
|
||||||
|
#Row-wise reduction
|
||||||
if operation=='row-wise-reduction':
|
if operation=='row-wise-reduction':
|
||||||
layouts = map_to_list((str,p['layout']))
|
layouts = map_to_list((str,p['layout']))
|
||||||
if 'all' in layouts:
|
if 'all' in layouts:
|
||||||
@@ -121,23 +94,24 @@ def do_tuning(config_fname, spec_fname, viennacl_root):
|
|||||||
x = vcl.Vector(s[1] if A_trans=='N' else s[0], context=ctx, dtype=datatype)
|
x = vcl.Vector(s[1] if A_trans=='N' else s[0], context=ctx, dtype=datatype)
|
||||||
LHS = A if A_trans=='N' else A.T
|
LHS = A if A_trans=='N' else A.T
|
||||||
execute(LHS*x, ())
|
execute(LHS*x, ())
|
||||||
|
#Matrix Product
|
||||||
if operation=='matrix-product':
|
if operation=='matrix-product':
|
||||||
layouts = map_to_list((str,p['layout']))
|
layouts = map_to_list((str,p['layout']))
|
||||||
if 'all' in layouts:
|
if 'all' in layouts:
|
||||||
layouts = ['NN', 'NT', 'TN', 'TT']
|
layouts = ['NN', 'NT', 'TN', 'TT']
|
||||||
for layout in layouts:
|
for layout in layouts:
|
||||||
|
def execution_handler(sizes, fname):
|
||||||
A_trans = layout[0]
|
A_trans = layout[0]
|
||||||
B_trans = layout[1]
|
B_trans = layout[1]
|
||||||
|
A = vcl.Matrix((sizes[0], sizes[1]) if A_trans=='N' else (sizes[1],sizes[0]), context=ctx, dtype=datatype, layout=vcl.COL_MAJOR);
|
||||||
A = vcl.Matrix((s[0], s[1]) if A_trans=='N' else (s[1],s[0]), context=ctx, dtype=datatype, layout=vcl.COL_MAJOR);
|
B = vcl.Matrix((sizes[1], sizes[2]) if B_trans=='N' else (sizes[2],sizes[1]), context=ctx, dtype=datatype, layout=vcl.COL_MAJOR);
|
||||||
B = vcl.Matrix((s[1], s[2]) if B_trans=='N' else (s[2],s[1]), context=ctx, dtype=datatype, layout=vcl.COL_MAJOR);
|
|
||||||
LHS = A if A_trans=='N' else A.T
|
LHS = A if A_trans=='N' else A.T
|
||||||
RHS = B if B_trans=='N' else B.T
|
RHS = B if B_trans=='N' else B.T
|
||||||
alpha = vcl.HostScalar(1.0, context=ctx, dtype = datatype)
|
alpha = vcl.HostScalar(1.0, context=ctx, dtype = datatype)
|
||||||
beta = vcl.HostScalar(1.0, context=ctx, dtype = datatype)
|
beta = vcl.HostScalar(1.0, context=ctx, dtype = datatype)
|
||||||
C = vcl.Matrix((s[0], s[2]), context=ctx, dtype = datatype, layout=vcl.COL_MAJOR)
|
C = vcl.Matrix((sizes[0], sizes[2]), context=ctx, dtype = datatype, layout=vcl.COL_MAJOR)
|
||||||
execute(vcl.Assign(C,LHS*RHS*alpha + C*beta),(A_trans, B_trans))
|
execute(vcl.Assign(C,LHS*RHS*alpha + C*beta),(A_trans, B_trans), sizes, fname)
|
||||||
|
generate_dataset(operation, execution_handler)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
99
autotune/python/dataset.py
Normal file
99
autotune/python/dataset.py
Normal file
@@ -0,0 +1,99 @@
|
|||||||
|
import os
|
||||||
|
import re
|
||||||
|
import random
|
||||||
|
import numpy as np
|
||||||
|
from sklearn.neighbors.kde import KernelDensity;
|
||||||
|
|
||||||
|
def generate_dataset(operation, execution_handler):
|
||||||
|
I = 5
|
||||||
|
step = 64;
|
||||||
|
max_size = 4000;
|
||||||
|
|
||||||
|
#Retrieves the existing data
|
||||||
|
print "Retrieving data..."
|
||||||
|
path = "./data"
|
||||||
|
files = os.listdir(path)
|
||||||
|
X = np.empty((len(files),3))
|
||||||
|
t = np.empty(len(files))
|
||||||
|
profiles = []
|
||||||
|
nonemptyfiles = []
|
||||||
|
for i,fname in enumerate(files):
|
||||||
|
if os.path.getsize(os.path.join(path,fname))>0:
|
||||||
|
nonemptyfiles.append(fname)
|
||||||
|
files = nonemptyfiles
|
||||||
|
|
||||||
|
for i,fname in enumerate(files):
|
||||||
|
MNK = re.search(r"([0-9]+)-([0-9]+)-([0-9]+).csv", fname)
|
||||||
|
fl = open(os.path.join(path,fname),"rb")
|
||||||
|
A = np.loadtxt(fl,delimiter=',')
|
||||||
|
x = np.array([MNK.group(1), MNK.group(2), MNK.group(3)]).astype(float)
|
||||||
|
y = tuple(A[np.argmin(A[:,0]),1:])
|
||||||
|
if y not in profiles:
|
||||||
|
profiles.append(y)
|
||||||
|
idx = profiles.index(y)
|
||||||
|
X[i,:] = x
|
||||||
|
t[i] = idx
|
||||||
|
|
||||||
|
#Generates new data
|
||||||
|
print "Generating new data..."
|
||||||
|
kdes = [KernelDensity(kernel='gaussian', bandwidth=2*step).fit(X[t==i,:]) for i in range(int(max(t))+1)] if files else [];
|
||||||
|
X.resize((len(files)+I, 3), refcheck=False);
|
||||||
|
t.resize(len(files)+I, refcheck=False);
|
||||||
|
|
||||||
|
max_square = max_size/step
|
||||||
|
for i in range(I):
|
||||||
|
n_per_label = np.bincount(t[0:i+1].astype(int));
|
||||||
|
Xtuples = [tuple(x) for x in X];
|
||||||
|
r = random.random();
|
||||||
|
while(True):
|
||||||
|
if(len(kdes)==0 or r<=1.0/len(kdes)):
|
||||||
|
x = np.array([step*random.randint(1,40), step*random.randint(1,40), step*random.randint(1,40)]);
|
||||||
|
else:
|
||||||
|
probs = (1.0/n_per_label)
|
||||||
|
distr = np.random.choice(range(n_per_label.size), p = probs/np.sum(probs))
|
||||||
|
x = kdes[distr].sample()[0]
|
||||||
|
x = np.maximum(np.ones(x.shape),(x - step/2).astype(int)/step + 1)*step
|
||||||
|
if tuple(x) not in Xtuples:
|
||||||
|
break;
|
||||||
|
x = x.astype(int)
|
||||||
|
x = [2048, 2048, 512]
|
||||||
|
fname = os.path.join(path, `x[0]` +"-"+ `x[1]` +"-"+ `x[2]` +".csv")
|
||||||
|
#Execute auto-tuning procedure
|
||||||
|
execution_handler(x, fname)
|
||||||
|
#Load csv into matrix
|
||||||
|
fl = open(fname,"rb");
|
||||||
|
A = np.loadtxt(fl,delimiter=',');
|
||||||
|
#Update the kernel density estimators
|
||||||
|
y = tuple(A[np.argmin(A[:,0]),1:]);
|
||||||
|
if y not in profiles:
|
||||||
|
profiles.append(y);
|
||||||
|
kdes.append(KernelDensity(kernel='gaussian', bandwidth=2*step));
|
||||||
|
idx = profiles.index(y);
|
||||||
|
#Update data
|
||||||
|
X[len(files)+i,:] = x;
|
||||||
|
t[len(files)+i] = idx;
|
||||||
|
#Update density estimator p(M,N,K | t=idx)
|
||||||
|
kdes[idx].fit(X[t[0:len(files)+i+1]==idx,:]);
|
||||||
|
|
||||||
|
|
||||||
|
print "Exporting data...";
|
||||||
|
#Shuffle the list of file
|
||||||
|
files = os.listdir(path)
|
||||||
|
random.shuffle(files)
|
||||||
|
X = np.empty((len(files),3))
|
||||||
|
Y = np.zeros((len(files), len(profiles)))
|
||||||
|
for i,fname in enumerate(files):
|
||||||
|
MNK = re.search(r"([0-9]+)-([0-9]+)-([0-9]+).csv", fname)
|
||||||
|
X[i,:] = map(float,[MNK.group(k) for k in range(1,4)])
|
||||||
|
fl = open(os.path.join(path,fname),"rb");
|
||||||
|
A = np.loadtxt(fl,delimiter=',')
|
||||||
|
for j,y in enumerate(profiles):
|
||||||
|
idx = np.where(np.all(A[:,1:]==y,axis=1))[0]
|
||||||
|
if idx.size:
|
||||||
|
Y[i,j] = 2*1e-9*X[i,0]*X[i,1]*X[i,2]/A[idx[0],0]
|
||||||
|
else:
|
||||||
|
sys.exit('Data invalid! Were all the data csv files generated using the same auto-tuner options?')
|
||||||
|
np.savetxt(export_path+'X.csv', X)
|
||||||
|
np.savetxt(export_path+'Y.csv', Y)
|
||||||
|
np.savetxt(export_path+'profiles.csv', profiles)
|
||||||
|
open(export_path+'pad.csv', 'w').write(str(pad))
|
@@ -13,12 +13,6 @@ from deap import tools as deap_tools
|
|||||||
|
|
||||||
from collections import OrderedDict as odict
|
from collections import OrderedDict as odict
|
||||||
|
|
||||||
def hamming_distance(ind1, ind2):
|
|
||||||
res = 0
|
|
||||||
for x,y in enumerate(ind1, ind2):
|
|
||||||
if x==y:
|
|
||||||
res = res + 1
|
|
||||||
return res
|
|
||||||
|
|
||||||
def closest_divisor(N, x):
|
def closest_divisor(N, x):
|
||||||
x_low=x_high=max(1,min(round(x),N))
|
x_low=x_high=max(1,min(round(x),N))
|
||||||
@@ -39,16 +33,16 @@ def b_gray_to_bin(A='00000000', endian='big'):
|
|||||||
|
|
||||||
class GeneticOperators(object):
|
class GeneticOperators(object):
|
||||||
|
|
||||||
def __init__(self, device, statement, parameters, parameter_names, TemplateType, build_template):
|
def __init__(self, device, statement, parameter_names, TemplateType, build_template, out):
|
||||||
self.device = device
|
self.device = device
|
||||||
self.statement = statement
|
self.statement = statement
|
||||||
self.parameters = parameters
|
|
||||||
self.parameter_names = parameter_names
|
self.parameter_names = parameter_names
|
||||||
self.TemplateType = TemplateType
|
self.TemplateType = TemplateType
|
||||||
self.ParameterType = TemplateType.Parameters
|
self.ParameterType = TemplateType.Parameters
|
||||||
self.build_template = build_template
|
self.build_template = build_template
|
||||||
self.cache = {}
|
self.cache = {}
|
||||||
self.indpb = 0.05
|
self.indpb = 0.05
|
||||||
|
self.out = out
|
||||||
|
|
||||||
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
|
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
|
||||||
creator.create("Individual", list, fitness=creator.FitnessMin)
|
creator.create("Individual", list, fitness=creator.FitnessMin)
|
||||||
@@ -108,7 +102,7 @@ class GeneticOperators(object):
|
|||||||
while True:
|
while True:
|
||||||
new_individual = copy.deepcopy(individual)
|
new_individual = copy.deepcopy(individual)
|
||||||
for i in range(len(new_individual)):
|
for i in range(len(new_individual)):
|
||||||
if i < 2 and random.random() < 0.2:
|
if i < 2 and random.random() < self.indpb:
|
||||||
while new_individual[i] == individual[i]:
|
while new_individual[i] == individual[i]:
|
||||||
new_individual[i] = random.randint(0, 2)
|
new_individual[i] = random.randint(0, 2)
|
||||||
elif i >= 2 and random.random() < self.indpb:
|
elif i >= 2 and random.random() < self.indpb:
|
||||||
@@ -125,7 +119,9 @@ class GeneticOperators(object):
|
|||||||
parameters = self.decode(individual)
|
parameters = self.decode(individual)
|
||||||
template = self.build_template(self.TemplateType.Parameters(*parameters))
|
template = self.build_template(self.TemplateType.Parameters(*parameters))
|
||||||
try:
|
try:
|
||||||
self.cache[tuple(individual)] = tools.benchmark(template, self.statement, self.device)
|
tt = tools.benchmark(template, self.statement, self.device)
|
||||||
|
self.out.write(','.join([str(tt)]+map(str,map(int,parameters)))+'\n')
|
||||||
|
self.cache[tuple(individual)] = tt
|
||||||
except:
|
except:
|
||||||
self.cache[tuple(individual)] = 10
|
self.cache[tuple(individual)] = 10
|
||||||
return self.cache[tuple(individual)],
|
return self.cache[tuple(individual)],
|
||||||
|
@@ -9,31 +9,45 @@ import deap.tools
|
|||||||
|
|
||||||
from genetic import GeneticOperators
|
from genetic import GeneticOperators
|
||||||
|
|
||||||
def exhaustive(statement, context, TemplateType, build_template, parameter_names, all_parameters, compute_perf, perf_metric, out):
|
#~ def parameter_space(operation):
|
||||||
device = context.devices[0]
|
#~ simd = [1, 2, 4, 8]
|
||||||
nvalid = 0
|
#~ pow2_1D = [2**k for k in range(12)]
|
||||||
current = 0
|
#~ pow2_2D = [2**i for i in range(8)]
|
||||||
minT = float('inf')
|
#~ pow2_2D_unrolled = [2**i for i in range(8)]
|
||||||
for individual in itertools.product(*all_parameters):
|
#~ FetchingPolicy = vcl.atidlas.FetchingPolicy
|
||||||
template = build_template(TemplateType.Parameters(*individual))
|
#~ fetch = [FetchingPolicy.FETCH_FROM_LOCAL, FetchingPolicy.FETCH_FROM_GLOBAL_CONTIGUOUS, FetchingPolicy.FETCH_FROM_GLOBAL_STRIDED]
|
||||||
if not tools.skip(template, statement, device):
|
#~ if operation == 'vector-axpy': return [simd, pow2_1D, pow2_1D, fetch]
|
||||||
nvalid = nvalid + 1
|
#~ if operation == 'reduction': return [simd, pow2_1D, pow2_1D, fetch]
|
||||||
for individual in itertools.product(*all_parameters):
|
#~ if operation == 'matrix-axpy': return [simd, pow2_2D, pow2_2D, pow2_2D, pow2_2D, fetch]
|
||||||
template = build_template(TemplateType.Parameters(*individual))
|
#~ if operation == 'row-wise-reduction': return [simd, pow2_2D, pow2_2D, pow2_1D, fetch]
|
||||||
try:
|
#~ if operation == 'matrix-product': return [simd, pow2_2D, pow2_2D, pow2_2D, pow2_2D_unrolled, pow2_2D_unrolled, pow2_2D_unrolled, fetch, fetch, [0] + pow2_2D, [0] + pow2_2D]
|
||||||
T = tools.benchmark(template,statement,device)
|
#~
|
||||||
current = current + 1
|
|
||||||
if T < minT:
|
|
||||||
minT = T
|
|
||||||
best = individual
|
|
||||||
sys.stdout.write('%d / %d , Best is %d %s for %s\r'%(current, nvalid, compute_perf(minT), perf_metric, best))
|
|
||||||
sys.stdout.flush()
|
|
||||||
except:
|
|
||||||
pass
|
|
||||||
sys.stdout.write('\n')
|
|
||||||
sys.stdout.flush()
|
|
||||||
|
|
||||||
|
#~ def exhaustive(statement, context, TemplateType, build_template, parameter_names, all_parameters, compute_perf, perf_metric, out):
|
||||||
|
#~ device = context.devices[0]
|
||||||
|
#~ nvalid = 0
|
||||||
|
#~ current = 0
|
||||||
|
#~ minT = float('inf')
|
||||||
|
#~ for individual in itertools.product(*all_parameters):
|
||||||
|
#~ template = build_template(TemplateType.Parameters(*individual))
|
||||||
|
#~ if not tools.skip(template, statement, device):
|
||||||
|
#~ nvalid = nvalid + 1
|
||||||
|
#~ for individual in itertools.product(*all_parameters):
|
||||||
|
#~ template = build_template(TemplateType.Parameters(*individual))
|
||||||
|
#~ try:
|
||||||
|
#~ T = tools.benchmark(template,statement,device)
|
||||||
|
#~ current = current + 1
|
||||||
|
#~ if T < minT:
|
||||||
|
#~ minT = T
|
||||||
|
#~ best = individual
|
||||||
|
#~ sys.stdout.write('%d / %d , Best is %d %s for %s\r'%(current, nvalid, compute_perf(minT), perf_metric, best))
|
||||||
|
#~ sys.stdout.flush()
|
||||||
|
#~ except:
|
||||||
|
#~ pass
|
||||||
|
#~ sys.stdout.write('\n')
|
||||||
|
#~ sys.stdout.flush()
|
||||||
|
#~
|
||||||
|
|
||||||
def genetic(statement, context, TemplateType, build_template, parameter_names, all_parameters, compute_perf, perf_metric, out):
|
def genetic(statement, context, TemplateType, build_template, parameter_names, compute_perf, perf_metric, out):
|
||||||
GA = GeneticOperators(context.devices[0], statement, all_parameters, parameter_names, TemplateType, build_template)
|
GA = GeneticOperators(context.devices[0], statement, parameter_names, TemplateType, build_template, out)
|
||||||
GA.optimize(maxtime='5m0s', maxgen=1000, compute_perf=compute_perf, perf_metric=perf_metric)
|
GA.optimize(maxtime='2m30s', maxgen=1000, compute_perf=compute_perf, perf_metric=perf_metric)
|
||||||
|
Reference in New Issue
Block a user