[DOCS] use numel for num_elements in elementwise tutorial (#228)
This commit is contained in:
committed by
GitHub
parent
f26a48a3b4
commit
6aa5720d75
@@ -55,7 +55,7 @@ def add(x: torch.Tensor, y: torch.Tensor):
|
|||||||
# We need to preallocate the output
|
# We need to preallocate the output
|
||||||
output = torch.empty_like(x)
|
output = torch.empty_like(x)
|
||||||
assert x.is_cuda and y.is_cuda and output.is_cuda
|
assert x.is_cuda and y.is_cuda and output.is_cuda
|
||||||
n_elements = output.shape[0]
|
n_elements = output.numel()
|
||||||
# The SPMD launch grid denotes the number of kernel instances that run in parallel.
|
# The SPMD launch grid denotes the number of kernel instances that run in parallel.
|
||||||
# It is analogous to CUDA launch grids. It can be either Tuple[int], or Callable(metaparameters) -> Tuple[int]
|
# It is analogous to CUDA launch grids. It can be either Tuple[int], or Callable(metaparameters) -> Tuple[int]
|
||||||
# In this case, we use a 1D grid where the size is the number of blocks
|
# In this case, we use a 1D grid where the size is the number of blocks
|
||||||
|
Reference in New Issue
Block a user