[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-07-28 00:52:17 +00:00
parent 2663713aec
commit 6cffd02787
167 changed files with 298 additions and 298 deletions

View File

@@ -324,22 +324,22 @@ for different problem sizes.</p>
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
3 32768.0 63.999998 63.999998
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 341.333321
6 262144.0 341.333321 384.000001
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 702.171410
9 2097152.0 722.823517 722.823517
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 842.004273 842.004273
13 33554432.0 842.004273 843.811163
14 67108864.0 847.448255 848.362445
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 44.802 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 39.973 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 512.000001 186.181817
0 256.0 512.000001 546.133347 190.511628
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 585.142849 154.566038
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 814.058574 406.179533 198.834951
94 12288.0 814.111783 416.101597 199.197579
93 12160.0 814.058574 406.179533 198.936606
94 12288.0 814.111783 415.661740 199.197579
95 12416.0 812.498981 412.149375 198.755369
96 12544.0 812.566838 412.971190 199.012395
97 12672.0 812.633240 412.097543 199.069228
96 12544.0 812.566838 412.971190 199.111113
97 12672.0 812.633240 412.097543 199.167004
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 21.669 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.191 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -568,42 +568,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 2.978909 2.978909
0 256.0 2.978909 ... 3.276800 3.276800
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 15.420235 15.420235
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 37.971025 ... 39.025776 39.025776
6 1024.0 49.932191 ... 52.428801 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.109587
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 51.150050 ... 53.773130 52.428801
7 1152.0 45.242181 ... 47.396572 46.656000
8 1280.0 51.200001 ... 56.888887 56.888887
9 1408.0 64.138541 ... 67.305878 66.485074
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 63.372618 ... 62.492442 62.061463
12 1792.0 72.983276 ... 72.047592 71.588687
13 1920.0 68.776119 ... 70.172588 70.172588
14 2048.0 73.584279 ... 76.959706 76.608294
15 2176.0 83.155572 ... 86.367588 85.269692
16 2304.0 68.056616 ... 76.809875 76.563695
17 2432.0 71.125224 ... 83.864074 84.877538
18 2560.0 77.833728 ... 81.108913 80.908642
19 2688.0 83.552988 ... 89.888756 89.464755
20 2816.0 83.712490 ... 83.074685 82.446516
21 2944.0 81.967162 ... 82.237674 82.237674
22 3072.0 82.540970 ... 89.030036 89.451983
23 3200.0 84.432717 ... 96.240602 95.665176
24 3328.0 82.939284 ... 83.130825 84.795401
25 3456.0 81.932484 ... 91.615417 91.200871
26 3584.0 83.954614 ... 95.858629 98.483450
27 3712.0 82.491612 ... 87.937800 88.170647
28 3840.0 85.070769 ... 86.875096 91.473945
29 3968.0 87.066671 ... 91.472214 87.723894
30 4096.0 93.924229 ... 92.436452 89.299883
11 1664.0 62.929456 ... 62.061463 62.061463
12 1792.0 72.512412 ... 62.441243 62.441243
13 1920.0 69.120002 ... 70.530615 70.530615
14 2048.0 73.908442 ... 77.314362 76.959706
15 2176.0 83.155572 ... 86.367588 85.632545
16 2304.0 68.251065 ... 76.809875 76.563695
17 2432.0 71.305746 ... 74.918570 84.877538
18 2560.0 78.019048 ... 81.512437 80.511054
19 2688.0 83.737433 ... 90.316801 88.422041
20 2816.0 79.443003 ... 82.916747 83.392363
21 2944.0 82.237674 ... 82.373605 83.060049
22 3072.0 82.661468 ... 87.924073 87.584078
23 3200.0 84.432717 ... 95.238096 94.955488
24 3328.0 82.843841 ... 85.196803 85.602017
25 3456.0 78.502012 ... 85.133652 89.779026
26 3584.0 87.211821 ... 90.364394 97.522120
27 3712.0 86.192706 ... 86.754095 87.246590
28 3840.0 83.245767 ... 92.236860 84.036474
29 3968.0 92.512459 ... 83.866153 90.859224
30 4096.0 87.438257 ... 84.679957 90.169784
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 20.621 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 52.358 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -371,7 +371,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.011 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.187 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 307.200008 99.096776 307.200008
0 1024.0 311.088617 99.497980 311.088617
1 1536.0 351.085717 133.083026 341.333333
2 2048.0 420.102553 161.684218 338.979315
3 2560.0 461.954908 182.857144 328.556154
4 3072.0 511.999982 191.501303 315.076914
5 3584.0 551.384634 208.271186 310.527060
6 4096.0 568.231237 220.412561 296.990947
7 4608.0 498.162157 231.849059 289.507855
8 5120.0 525.128191 242.845844 286.433562
9 5632.0 536.380957 243.545956 290.683877
10 6144.0 542.117638 248.661056 286.322318
2 2048.0 423.724127 162.217818 336.657521
3 2560.0 461.954908 182.857144 330.322572
4 3072.0 515.580429 191.501303 320.556515
5 3584.0 554.941930 208.271186 309.410081
6 4096.0 568.231237 220.412561 297.890900
7 4608.0 498.162157 231.849059 287.251954
8 5120.0 525.128191 242.845844 283.787523
9 5632.0 538.517949 243.545956 290.683877
10 6144.0 544.118087 248.661056 285.767458
11 6656.0 527.207907 256.000009 286.793541
12 7168.0 507.469040 261.844750 288.160801
13 7680.0 481.253256 260.338991 276.756754
14 8192.0 459.364487 269.326017 286.600589
15 8704.0 416.958106 267.472468 284.599455
12 7168.0 507.469040 261.844750 288.644296
13 7680.0 482.513091 260.707203 277.590365
14 8192.0 460.440290 269.326017 286.600589
15 8704.0 416.958106 268.159180 285.182257
16 9216.0 428.651187 273.066667 289.507855
17 9728.0 438.857162 280.278512 288.950501
18 10240.0 446.836366 286.433562 288.112552
19 10752.0 428.651173 246.464170 290.267711
20 11264.0 429.104745 245.313973 285.767446
21 11776.0 421.826879 249.227509 288.686414
22 12288.0 420.102570 254.673582 294.911986
23 12800.0 415.135142 253.465340 289.811310
17 9728.0 438.857162 280.615388 288.950501
18 10240.0 447.650282 286.767793 290.840246
19 10752.0 430.079980 246.699797 290.267711
20 11264.0 429.104745 245.091565 286.069848
21 11776.0 421.826879 249.667843 288.686414
22 12288.0 420.102570 254.673582 295.207195
23 12800.0 415.696898 253.674644 288.721817
24 13312.0 412.242569 252.559690 290.179836
25 13824.0 405.098897 257.190689 292.571423
26 14336.0 398.222222 254.673567 286.242939
27 14848.0 383.999990 257.108233 289.012175
28 15360.0 374.634130 257.610071 288.000007
29 15872.0 366.982663 262.890274 291.229369
25 13824.0 405.098897 257.390218 292.571423
26 14336.0 397.761846 254.673567 286.481278
27 14848.0 384.414233 257.293872 289.246765
28 15360.0 374.253788 257.790220 287.775181
29 15872.0 367.336555 262.890274 291.229369
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 9.590 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 11.823 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:36.693</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>13:07.532</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:20.621</p></td>
<td><p>05:52.358</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:21.669</p></td>
<td><p>03:23.191</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:09.590</p></td>
<td><p>02:11.823</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:44.802</p></td>
<td><p>01:39.973</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.011</p></td>
<td><p>00:00.187</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>