[CI] run clang-format (#24)

This commit is contained in:
Philippe Tillet
2022-07-26 17:25:03 -07:00
committed by GitHub
parent 25357083e6
commit 6d62d88d4f
62 changed files with 13673 additions and 11367 deletions

View File

@@ -8,24 +8,23 @@
namespace mlir {
//===----------------------------------------------------------------------===//
// AxisInfo
//===----------------------------------------------------------------------===//
// Function for extended Euclidean Algorithm
static int gcd_impl(int a, int b, int *x, int *y){
// Function for extended Euclidean Algorithm
static int gcd_impl(int a, int b, int *x, int *y) {
// Base Case
if (a == 0) {
*x = 0;
*y = 1;
return b;
*x = 0;
*y = 1;
return b;
}
int x1, y1; // To store results of recursive call
int gcd = gcd_impl(b%a, a, &x1, &y1);
int gcd = gcd_impl(b % a, a, &x1, &y1);
// Update x and y using results of
// recursive call
*x = y1 - (b/a) * x1;
*x = y1 - (b / a) * x1;
*y = x1;
return gcd;
}
@@ -35,17 +34,17 @@ static int gcd(int a, int b) {
return gcd_impl(a, b, &x, &y);
}
AxisInfo AxisInfo::getPessimisticValueState(Value value) {
size_t rank = 1;
if(TensorType ty = value.getType().dyn_cast<TensorType>())
if (TensorType ty = value.getType().dyn_cast<TensorType>())
rank = ty.getRank();
int divHint = 1;
if(BlockArgument blockArg = value.dyn_cast<BlockArgument>()){
Operation* op = blockArg.getOwner()->getParentOp();
if(FuncOp fun = dyn_cast<FuncOp>(op)){
Attribute attr = fun.getArgAttr(blockArg.getArgNumber(), "tt.divisibility");
if(attr)
if (BlockArgument blockArg = value.dyn_cast<BlockArgument>()) {
Operation *op = blockArg.getOwner()->getParentOp();
if (FuncOp fun = dyn_cast<FuncOp>(op)) {
Attribute attr =
fun.getArgAttr(blockArg.getArgNumber(), "tt.divisibility");
if (attr)
divHint = attr.cast<IntegerAttr>().getValue().getZExtValue();
}
}
@@ -55,51 +54,51 @@ AxisInfo AxisInfo::getPessimisticValueState(Value value) {
return AxisInfo(contiguity, divisibility, constancy);
}
// The gcd of both arguments for each dimension
AxisInfo AxisInfo::join(const AxisInfo &lhs,
const AxisInfo &rhs) {
AxisInfo AxisInfo::join(const AxisInfo &lhs, const AxisInfo &rhs) {
ContiguityT retContiguity;
DivisibilityT retDivisibility;
ConstancyT retConstancy;
for(size_t d = 0; d < lhs.getRank(); d++){
for (size_t d = 0; d < lhs.getRank(); d++) {
retContiguity.push_back(gcd(lhs.getContiguity(d), rhs.getContiguity(d)));
retDivisibility.push_back(gcd(lhs.getDivisibility(d), rhs.getDivisibility(d)));
retDivisibility.push_back(
gcd(lhs.getDivisibility(d), rhs.getDivisibility(d)));
retConstancy.push_back(gcd(lhs.getConstancy(d), rhs.getConstancy(d)));
}
return AxisInfo(retContiguity, retDivisibility, retConstancy);
}
//===----------------------------------------------------------------------===//
// AxisInfoAnalysis
//===----------------------------------------------------------------------===//
AxisInfo AxisInfoAnalysis::visitBinaryOp(Operation* op, AxisInfo lhsInfo, AxisInfo rhsInfo,
const std::function<int(AxisInfo,AxisInfo,int)>& getContiguity,
const std::function<int(AxisInfo,AxisInfo,int)>& getDivisibility,
const std::function<int(AxisInfo,AxisInfo,int)>& getConstancy) {
int rank = lhsInfo.getRank();
AxisInfo::ContiguityT newContiguity;
AxisInfo::DivisibilityT newDivisibility;
AxisInfo::ConstancyT newConstancy;
for(size_t d = 0; d < rank; d++){
newContiguity.push_back(getContiguity(lhsInfo, rhsInfo, d));
newDivisibility.push_back(getDivisibility(lhsInfo, rhsInfo, d));
newConstancy.push_back(getConstancy(lhsInfo, rhsInfo, d));
}
return AxisInfo(newContiguity, newDivisibility, newConstancy);
AxisInfo AxisInfoAnalysis::visitBinaryOp(
Operation *op, AxisInfo lhsInfo, AxisInfo rhsInfo,
const std::function<int(AxisInfo, AxisInfo, int)> &getContiguity,
const std::function<int(AxisInfo, AxisInfo, int)> &getDivisibility,
const std::function<int(AxisInfo, AxisInfo, int)> &getConstancy) {
int rank = lhsInfo.getRank();
AxisInfo::ContiguityT newContiguity;
AxisInfo::DivisibilityT newDivisibility;
AxisInfo::ConstancyT newConstancy;
for (size_t d = 0; d < rank; d++) {
newContiguity.push_back(getContiguity(lhsInfo, rhsInfo, d));
newDivisibility.push_back(getDivisibility(lhsInfo, rhsInfo, d));
newConstancy.push_back(getConstancy(lhsInfo, rhsInfo, d));
}
return AxisInfo(newContiguity, newDivisibility, newConstancy);
}
ChangeResult AxisInfoAnalysis::visitOperation(Operation *op,
ArrayRef<LatticeElement<AxisInfo> *> operands) {
ChangeResult AxisInfoAnalysis::visitOperation(
Operation *op, ArrayRef<LatticeElement<AxisInfo> *> operands) {
AxisInfo curr;
// This preserves the input axes (e.g., cast):
if (llvm::isa<arith::ExtSIOp, arith::ExtUIOp, arith::TruncIOp,
triton::PtrToIntOp, triton::IntToPtrOp>(op))
curr = operands[0]->getValue();
// Constant ranges
if (triton::MakeRangeOp make_range = llvm::dyn_cast<triton::MakeRangeOp>(op)){
if (triton::MakeRangeOp make_range =
llvm::dyn_cast<triton::MakeRangeOp>(op)) {
int start = make_range.start();
int end = make_range.end();
AxisInfo::ContiguityT contiguity = {end - start};
@@ -108,61 +107,59 @@ ChangeResult AxisInfoAnalysis::visitOperation(Operation *op,
curr = AxisInfo(contiguity, divisibility, constancy);
}
// Constant
if (arith::ConstantOp constant = llvm::dyn_cast<arith::ConstantOp>(op)){
if (arith::ConstantOp constant = llvm::dyn_cast<arith::ConstantOp>(op)) {
auto intAttr = constant.getValue().dyn_cast<IntegerAttr>();
if(intAttr){
if (intAttr) {
size_t val = intAttr.getValue().getZExtValue();
curr = AxisInfo({1}, {highestPowOf2Divisor(val)}, {1});
}
// TODO: generalize to dense attr
auto splatAttr = constant.getValue().dyn_cast<SplatElementsAttr>();
if(splatAttr && splatAttr.getElementType().isInteger(32)){
if (splatAttr && splatAttr.getElementType().isInteger(32)) {
auto value = splatAttr.getSplatValue<int>();
TensorType ty = splatAttr.getType().cast<TensorType>();
curr = AxisInfo(AxisInfo::ContiguityT(ty.getRank(), 1),
AxisInfo::DivisibilityT(ty.getRank(), highestPowOf2Divisor(value)),
AxisInfo::ConstancyT(ty.getShape().begin(), ty.getShape().end()));
curr = AxisInfo(
AxisInfo::ContiguityT(ty.getRank(), 1),
AxisInfo::DivisibilityT(ty.getRank(), highestPowOf2Divisor(value)),
AxisInfo::ConstancyT(ty.getShape().begin(), ty.getShape().end()));
}
}
// Addition
if (llvm::isa<arith::AddIOp, triton::GEPOp>(op)){
auto newContiguity = [&](AxisInfo lhs, AxisInfo rhs, int d){
if (llvm::isa<arith::AddIOp, triton::GEPOp>(op)) {
auto newContiguity = [&](AxisInfo lhs, AxisInfo rhs, int d) {
return std::max(gcd(lhs.getContiguity(d), rhs.getConstancy(d)),
gcd(lhs.getConstancy(d), rhs.getContiguity(d)));
};
auto newConstancy = [&](AxisInfo lhs, AxisInfo rhs, int d){
auto newConstancy = [&](AxisInfo lhs, AxisInfo rhs, int d) {
return gcd(lhs.getConstancy(d), rhs.getConstancy(d));
};
auto newDivisibility = [&](AxisInfo lhs, AxisInfo rhs, int d){
auto newDivisibility = [&](AxisInfo lhs, AxisInfo rhs, int d) {
return gcd(lhs.getDivisibility(d), rhs.getDivisibility(d));
};
curr = visitBinaryOp(op, operands[0]->getValue(), operands[1]->getValue(),
newContiguity, newDivisibility, newConstancy);
newContiguity, newDivisibility, newConstancy);
}
// Multiplication
if (llvm::isa<arith::MulIOp>(op)){
auto newContiguity = [](AxisInfo lhs, AxisInfo rhs, int d){
return 1;
};
auto newConstancy = [](AxisInfo lhs, AxisInfo rhs, int d){
if (llvm::isa<arith::MulIOp>(op)) {
auto newContiguity = [](AxisInfo lhs, AxisInfo rhs, int d) { return 1; };
auto newConstancy = [](AxisInfo lhs, AxisInfo rhs, int d) {
return gcd(lhs.getConstancy(d), rhs.getConstancy(d));
};
auto newDivisibility = [](AxisInfo lhs, AxisInfo rhs, int d){
return lhs.getDivisibility(d)*rhs.getDivisibility(d);
auto newDivisibility = [](AxisInfo lhs, AxisInfo rhs, int d) {
return lhs.getDivisibility(d) * rhs.getDivisibility(d);
};
curr = visitBinaryOp(op, operands[0]->getValue(), operands[1]->getValue(),
newContiguity, newDivisibility, newConstancy);
newContiguity, newDivisibility, newConstancy);
}
// Splat
if (llvm::isa<triton::SplatOp>(op)){
if (llvm::isa<triton::SplatOp>(op)) {
Type _retTy = *op->result_type_begin();
TensorType retTy = _retTy.cast<TensorType>();
AxisInfo opInfo = operands[0]->getValue();
AxisInfo::ContiguityT contiguity;
AxisInfo::DivisibilityT divisibility;
AxisInfo::ConstancyT constancy;
for(size_t d = 0; d < retTy.getRank(); d++){
for (size_t d = 0; d < retTy.getRank(); d++) {
contiguity.push_back(1);
divisibility.push_back(opInfo.getDivisibility(0));
constancy.push_back(retTy.getShape()[d]);
@@ -171,7 +168,7 @@ ChangeResult AxisInfoAnalysis::visitOperation(Operation *op,
}
// Reshape
// TODO: Replace by `unsqueeze`
if (llvm::isa<triton::ReshapeOp>(op)){
if (llvm::isa<triton::ReshapeOp>(op)) {
Type _retTy = *op->result_type_begin();
Type _opTy = *op->operand_type_begin();
TensorType retTy = _retTy.cast<TensorType>();
@@ -184,20 +181,17 @@ ChangeResult AxisInfoAnalysis::visitOperation(Operation *op,
AxisInfo::ConstancyT constancy;
bool is_skewed = false;
size_t current = 0;
for(size_t d = 0; d < retTy.getRank(); d++){
if(retShape[d] == 1){
for (size_t d = 0; d < retTy.getRank(); d++) {
if (retShape[d] == 1) {
contiguity.push_back(1);
divisibility.push_back(1);
constancy.push_back(1);
}
else if(!is_skewed
&& retShape[d] == opShape[current]){
} else if (!is_skewed && retShape[d] == opShape[current]) {
contiguity.push_back(opInfo.getContiguity()[current]);
divisibility.push_back(opInfo.getDivisibility()[current]);
constancy.push_back(opInfo.getConstancy()[current]);
current++;
}
else {
} else {
is_skewed = true;
contiguity.push_back(1);
divisibility.push_back(1);
@@ -207,7 +201,7 @@ ChangeResult AxisInfoAnalysis::visitOperation(Operation *op,
curr = AxisInfo(contiguity, divisibility, constancy);
}
// Broadcast
if (llvm::isa<triton::BroadcastOp>(op)){
if (llvm::isa<triton::BroadcastOp>(op)) {
Type _retTy = *op->result_type_begin();
Type _opTy = *op->operand_type_begin();
TensorType retTy = _retTy.cast<TensorType>();
@@ -218,14 +212,14 @@ ChangeResult AxisInfoAnalysis::visitOperation(Operation *op,
AxisInfo::ContiguityT contiguity;
AxisInfo::DivisibilityT divisibility;
AxisInfo::ConstancyT constancy;
for(size_t d = 0; d < retTy.getRank(); d++){
for (size_t d = 0; d < retTy.getRank(); d++) {
contiguity.push_back(opShape[d] == 1 ? 1 : opInfo.getContiguity(d));
divisibility.push_back(opInfo.getDivisibility(d));
constancy.push_back(opShape[d] == 1 ? retShape[d] : 1);
}
curr = AxisInfo(contiguity, divisibility, constancy);
}
if(curr.getRank() == 0){
if (curr.getRank() == 0) {
return markAllPessimisticFixpoint(op->getResults());
}
// join all latice elements
@@ -236,4 +230,4 @@ ChangeResult AxisInfoAnalysis::visitOperation(Operation *op,
return result;
}
}
} // namespace mlir