History prior to this date belonged to the now deprecated ISAAC project, and was deleted to save space
This commit is contained in:
48
python/examples/attention/bench.py
Normal file
48
python/examples/attention/bench.py
Normal file
@@ -0,0 +1,48 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
import reference
|
||||
import optimized
|
||||
from time import time
|
||||
|
||||
use_half = True
|
||||
def cast(x):
|
||||
if use_half:
|
||||
return x.half()
|
||||
else:
|
||||
return x
|
||||
|
||||
# GPU device
|
||||
device = torch.device("cuda:0")
|
||||
# shapes
|
||||
batch, nhead = 8, 28
|
||||
dm, dk, dv = 1024, 1024, 1024
|
||||
lq, lk, lv = 1024, 1024, 1024
|
||||
# initialize tensors
|
||||
torch.manual_seed(0)
|
||||
np.random.seed(0)
|
||||
query = cast(torch.randn(batch, lq, dm)).cuda()
|
||||
key = cast(torch.randn(batch, lk, dm)).cuda()
|
||||
value = cast(torch.randn(batch, lv, dm)).cuda()
|
||||
# initialize layers
|
||||
torch.manual_seed(0)
|
||||
np.random.seed(0)
|
||||
rattn = cast(reference.MultiHeadAttention(nhead, dm, dk, dv).to(device))
|
||||
torch.manual_seed(0)
|
||||
np.random.seed(0)
|
||||
tattn = cast(optimized.MultiHeadAttention(nhead, dm, dk, dv).to(device))
|
||||
# test
|
||||
routput, _ = rattn(query, key, value)
|
||||
toutput, _ = tattn(query, key, value)
|
||||
diff = torch.max(torch.abs(routput - toutput))
|
||||
assert diff < 1e-2
|
||||
# benchmark
|
||||
start = time()
|
||||
routput, _ = rattn(query, key, value)
|
||||
end = time()
|
||||
rtime = end - start
|
||||
start = time()
|
||||
toutput, _ = tattn(query, key, value)
|
||||
end = time()
|
||||
ttime = end - start
|
||||
print(f'Torch: {rtime} s')
|
||||
print(f'Triton: {ttime} s')
|
50
python/examples/attention/optimized.py
Normal file
50
python/examples/attention/optimized.py
Normal file
@@ -0,0 +1,50 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import triton
|
||||
|
||||
class MultiHeadAttention(nn.Module):
|
||||
''' Multi-Head Attention module '''
|
||||
|
||||
def __init__(self, n_head, d_model, d_k, d_v):
|
||||
super().__init__()
|
||||
self.n_head = n_head
|
||||
self.d_k = d_k
|
||||
self.d_v = d_v
|
||||
# linear layers
|
||||
self.w_qs = nn.Linear(d_model, n_head * d_k)
|
||||
self.w_ks = nn.Linear(d_model, n_head * d_k)
|
||||
self.w_vs = nn.Linear(d_model, n_head * d_v)
|
||||
self.fc = nn.Linear(n_head * d_v, d_model)
|
||||
# initialize weights
|
||||
nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
|
||||
nn.init.normal_(self.w_ks.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
|
||||
nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_v)))
|
||||
nn.init.xavier_normal_(self.fc.weight)
|
||||
# layer normalization
|
||||
self.layer_norm = nn.LayerNorm(d_model)
|
||||
|
||||
|
||||
def forward(self, q, k, v, mask=None):
|
||||
# dimensions
|
||||
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
|
||||
sz_b, len_q, _ = q.size()
|
||||
sz_b, len_k, _ = k.size()
|
||||
sz_b, len_v, _ = v.size()
|
||||
# linear transformations
|
||||
residual = q
|
||||
q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
|
||||
k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
|
||||
v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)
|
||||
# scaled dot-product attention
|
||||
attn = triton.ops.einsum('blhk,bthk->hblt', q, k, [n_head, sz_b, len_q, len_k])
|
||||
attn = attn / np.sqrt(d_k)
|
||||
if mask is not None:
|
||||
attn = attn.masked_fill(mask[None], -np.inf)
|
||||
attn = torch.softmax(attn, dim=3)
|
||||
output = triton.ops.einsum('hblt,bthv->blhv', attn, v, [sz_b, len_q, n_head, d_v])
|
||||
output = output.view(sz_b, len_q, -1)
|
||||
output = self.fc(output)
|
||||
# epilogue
|
||||
output = self.layer_norm(output + residual)
|
||||
return output, attn
|
72
python/examples/attention/reference.py
Normal file
72
python/examples/attention/reference.py
Normal file
@@ -0,0 +1,72 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
class ScaledDotProductAttention(nn.Module):
|
||||
''' Scaled Dot-Product Attention '''
|
||||
|
||||
def __init__(self, temperature, attn_dropout=0.1):
|
||||
super().__init__()
|
||||
self.temperature = temperature
|
||||
self.softmax = nn.Softmax(dim=2)
|
||||
|
||||
def forward(self, q, k, v, mask=None):
|
||||
attn = torch.bmm(q, k.transpose(1, 2))
|
||||
attn = attn / self.temperature
|
||||
if mask is not None:
|
||||
attn = attn.masked_fill(mask, -np.inf)
|
||||
attn = self.softmax(attn)
|
||||
output = torch.bmm(attn, v)
|
||||
return output, attn
|
||||
|
||||
|
||||
|
||||
class MultiHeadAttention(nn.Module):
|
||||
''' Multi-Head Attention module '''
|
||||
|
||||
def __init__(self, n_head, d_model, d_k, d_v):
|
||||
super().__init__()
|
||||
self.n_head = n_head
|
||||
self.d_k = d_k
|
||||
self.d_v = d_v
|
||||
# linear layers
|
||||
self.w_qs = nn.Linear(d_model, n_head * d_k)
|
||||
self.w_ks = nn.Linear(d_model, n_head * d_k)
|
||||
self.w_vs = nn.Linear(d_model, n_head * d_v)
|
||||
self.fc = nn.Linear(n_head * d_v, d_model)
|
||||
# initialize weights
|
||||
nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
|
||||
nn.init.normal_(self.w_ks.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
|
||||
nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_v)))
|
||||
nn.init.xavier_normal_(self.fc.weight)
|
||||
# normalization
|
||||
self.layer_norm = nn.LayerNorm(d_model)
|
||||
# scaled dot-product
|
||||
self.attention = ScaledDotProductAttention(temperature=np.power(d_k, 0.5))
|
||||
|
||||
|
||||
def forward(self, q, k, v, mask=None):
|
||||
# dimensions
|
||||
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
|
||||
sz_b, len_q, _ = q.size()
|
||||
sz_b, len_k, _ = k.size()
|
||||
sz_b, len_v, _ = v.size()
|
||||
# linear transformations
|
||||
residual = q
|
||||
q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
|
||||
k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
|
||||
v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)
|
||||
# scaled dot-product attention
|
||||
q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_q, d_k) # (n*b) x lq x dk
|
||||
k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_k, d_k) # (n*b) x lk x dk
|
||||
v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_v, d_v) # (n*b) x lv x dv
|
||||
if mask:
|
||||
mask = mask.repeat(n_head, 1, 1) # (n*b) x .. x ..
|
||||
output, attn = self.attention(q, k, v, mask=mask)
|
||||
# linear transformation
|
||||
output = output.view(n_head, sz_b, len_q, d_v)
|
||||
output = output.permute(1, 2, 0, 3).contiguous().view(sz_b, len_q, -1) # b x lq x (n*dv)
|
||||
output = self.fc(output)
|
||||
# normalization
|
||||
output = self.layer_norm(output + residual)
|
||||
return output, attn
|
56
python/examples/batchnorm.py
Normal file
56
python/examples/batchnorm.py
Normal file
@@ -0,0 +1,56 @@
|
||||
import triton
|
||||
import numpy as np
|
||||
from enum import Enum
|
||||
|
||||
class MODE(Enum):
|
||||
TF = 1
|
||||
TORCH = 2
|
||||
|
||||
try:
|
||||
import tensorflow as tf
|
||||
mode = MODE.TF
|
||||
except ModuleNotFoundError:
|
||||
pass
|
||||
|
||||
try:
|
||||
import torch
|
||||
mode = MODE.TORCH
|
||||
except ModuleNotFoundError:
|
||||
pass
|
||||
|
||||
|
||||
C, H, W, B = 32, 1, 1, 128
|
||||
|
||||
x = np.random.uniform(-1, 1, (C, H, W, B)).astype(np.float32)
|
||||
gamma = np.random.uniform(-1, 1, C).astype(np.float32)
|
||||
beta = np.random.uniform(-1, 1, C).astype(np.float32)
|
||||
dy = np.random.uniform(-1, 1, (C, H, W, B)).astype(np.float32)
|
||||
|
||||
if mode == MODE.TORCH:
|
||||
fw_x = torch.from_numpy(x).cuda()
|
||||
fw_gamma = torch.from_numpy(gamma).cuda()
|
||||
fw_beta = torch.from_numpy(beta).cuda()
|
||||
fw_dy = torch.from_numpy(dy).cuda()
|
||||
# register gradients
|
||||
fw_x.requires_grad_(True)
|
||||
fw_gamma.requires_grad_(True)
|
||||
fw_beta.requires_grad_(True)
|
||||
# execute
|
||||
fw_y = triton.ops.batchnorm(fw_x, fw_gamma, fw_beta, 1e-4)
|
||||
fw_y.backward(fw_dy)
|
||||
|
||||
if mode == MODE.TF:
|
||||
fw_x = tf.placeholder(shape=x.shape, dtype=x.dtype)
|
||||
fw_gamma = tf.placeholder(shape=gamma.shape, dtype=gamma.dtype)
|
||||
fw_beta = tf.placeholder(shape=beta.shape, dtype=beta.dtype)
|
||||
fw_dy = tf.placeholder(shape=dy.shape, dtype=dy.dtype)
|
||||
# execute
|
||||
fw_y = triton.ops.batchnorm(fw_x, fw_gamma, fw_beta, 1e-4)
|
||||
fw_mean, fw_var = tf.nn.moments(fw_x, [1, 2, 3])
|
||||
fw_dx, fw_dgamma, fw_dbeta = tf.gradients(fw_y, [fw_x, fw_gamma, fw_beta], fw_dy)
|
||||
# run
|
||||
sess = tf.InteractiveSession()
|
||||
feed_dict = {fw_x: x, fw_gamma: gamma, fw_beta: beta, fw_dy: dy}
|
||||
sess.run(tf.global_variables_initializer())
|
||||
result = sess.run([fw_dx, fw_dgamma, fw_dbeta], feed_dict=feed_dict)
|
||||
print(result)
|
197
python/examples/einsum.py
Normal file
197
python/examples/einsum.py
Normal file
@@ -0,0 +1,197 @@
|
||||
import triton
|
||||
import torch
|
||||
from torch.utils.cpp_extension import load
|
||||
import numpy as np
|
||||
#import utils
|
||||
from time import time
|
||||
|
||||
#torch.backends.cudnn.benchmark = True
|
||||
|
||||
configs = []
|
||||
|
||||
# Matrix multiplication
|
||||
MNK = [
|
||||
(512, 512 ,512),
|
||||
(2048, 2048, 2048),
|
||||
(8192, 8192, 8192),
|
||||
|
||||
# (64, 64, 64000),
|
||||
# (64, 64, 128000),
|
||||
# (256, 256, 64000),
|
||||
# (256, 256, 128000),
|
||||
|
||||
# (1536, 16, 1536),
|
||||
# (1536, 32, 1536),
|
||||
# (1536, 64, 1536),
|
||||
# (1536, 128, 1536),
|
||||
# (4096, 16, 4096),
|
||||
# (4096, 32, 4096),
|
||||
# (4096, 64, 4096),
|
||||
# (4096, 128, 4096),
|
||||
|
||||
# (127008, 768, 576)
|
||||
]
|
||||
for M, N, K in MNK:
|
||||
matmul = lambda a, b: torch.matmul(a, b)
|
||||
configs += [([M, K], [K, N], [M, N], matmul, 'mk,kn->mn', dict())]
|
||||
for M, N, K in MNK:
|
||||
matmul = lambda a, b: torch.matmul(a.t(), b)
|
||||
configs += [([M, K], [M, N], [K, N], None, 'mk,mn->kn', dict())]
|
||||
for M, N, K in MNK:
|
||||
matmul = lambda a, b: torch.matmul(a, b.t())
|
||||
configs += [([M, N], [K, N], [M, K], None, 'mn,kn->mk', dict())]
|
||||
|
||||
# Relative attention
|
||||
NTHSE = [
|
||||
(16, 512, 1, 64, 64),
|
||||
# (16, 512, 1, 128, 128),
|
||||
# (16, 512, 1, 256, 256),
|
||||
# (16, 512, 1, 256, 512),
|
||||
(16, 512, 8, 64, 64),
|
||||
# (16, 512, 8, 128, 128),
|
||||
# (16, 512, 8, 256, 256),
|
||||
# (16, 512, 8, 256, 512),
|
||||
|
||||
# (64, 1024, 1, 64, 64),
|
||||
(64, 1024, 1, 128, 128),
|
||||
# (64, 1024, 1, 256, 256),
|
||||
# (64, 1024, 1, 256, 512),
|
||||
# (64, 1024, 8, 64, 64),
|
||||
(64, 1024, 8, 128, 128),
|
||||
# (64, 1024, 8, 256, 256),
|
||||
# (64, 1024, 8, 256, 512),
|
||||
|
||||
# (128, 1024, 1, 64, 64),
|
||||
# (128, 1024, 1, 128, 128),
|
||||
# (128, 1024, 1, 256, 256),
|
||||
(128, 1024, 1, 256, 512),
|
||||
# (128, 1024, 8, 64, 64),
|
||||
# (128, 1024, 8, 128, 128),
|
||||
# (128, 1024, 8, 256, 256),
|
||||
(128, 1024, 8, 256, 512)
|
||||
]
|
||||
for N, T, H, S, E in NTHSE:
|
||||
configs += [([N, T, H, S], [H, E, S], [N, H, T, E], None, 'nths,hes->nhte', dict())]
|
||||
for N, T, H, S, E in NTHSE:
|
||||
configs += [([N, H, T, E], [N, T, H, S], [H, E, S], None, 'nhte,nths->hes', dict())]
|
||||
for N, T, H, S, E in NTHSE:
|
||||
configs += [([N, H, T, E], [H, E, S], [N, T, H, S], None, 'nhte,hes->nths', dict())]
|
||||
|
||||
# 1D Dense convolution
|
||||
NCHKR = [
|
||||
(1, 1152, 12602, 512, 3)
|
||||
]
|
||||
for N, C, H, K, R in NCHKR:
|
||||
torch_fn = lambda a, b: torch.nn.functional.conv1d(a, b.permute(2, 0, 1))
|
||||
configs += [([N, C, H],
|
||||
[C, R, K],
|
||||
[N, K, H - R + 1],
|
||||
torch_fn,
|
||||
'nc(h+r),crk->nkh',
|
||||
dict())]
|
||||
|
||||
# 2D Dense convolution
|
||||
NCHWKRS = [
|
||||
(8, 64, 128, 128, 768, 3, 3),
|
||||
(8, 128, 64, 64, 256, 3, 3),
|
||||
(8, 256, 32, 32, 512, 3, 3),
|
||||
(8, 512, 32, 32, 1024, 3, 3)
|
||||
]
|
||||
for N, C, H, W, K, R, S in NCHWKRS:
|
||||
torch_fn = lambda a, b: torch.nn.functional.conv2d(a, b.permute(3, 0, 1, 2))
|
||||
configs += [([N, C, H, W],
|
||||
[C, R, S, K],
|
||||
[N, K, H - R + 1, W - R + 1],
|
||||
torch_fn,
|
||||
'nc(h+r)(w+s),crsk->nkhw',
|
||||
dict())]
|
||||
|
||||
# 3D Dense Convolution
|
||||
NCDHWKTRS = [
|
||||
(8, 32, 27, 100, 100, 64, 3, 3, 3),
|
||||
(8, 64, 23, 48, 48, 256, 3, 3, 3),
|
||||
(8, 256, 19, 22, 22, 640, 3, 3, 3),
|
||||
(8, 640, 15, 36, 36, 384, 3, 3, 3)
|
||||
]
|
||||
for N, C, D, H, W, K, T, R, S in NCDHWKTRS:
|
||||
torch_fn = lambda a, b: torch.nn.functional.conv3d(a, b.permute(4, 0, 1, 2, 3))
|
||||
configs += [([N, C, D, H, W],
|
||||
[C, T, R, S, K],
|
||||
[N, K, D - T + 1, H - R + 1, W - R + 1],
|
||||
torch_fn,
|
||||
'nc(d+t)(h+r)(w+s),ctrsk->nkdhw',
|
||||
dict())]
|
||||
|
||||
|
||||
# Shift convolution
|
||||
shift_cuda = torch.utils.cpp_extension.load(
|
||||
'shift_cuda', ['kernels/shift_cuda.cpp',
|
||||
'kernels/shift_cuda_kernel.cu'],
|
||||
extra_cflags=['-O3'])
|
||||
class shift(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, x, shift):
|
||||
ctx.save_for_backward(shift)
|
||||
return shift_cuda.forward(x, shift)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
shift, = ctx.saved_tensors
|
||||
grad_output = shift_cuda.backward(grad_output, shift)
|
||||
|
||||
return grad_output, None
|
||||
|
||||
NCHWKRS = [
|
||||
#(8, 64, 128, 128, 128, 3, 3),
|
||||
#(8, 128, 64, 64, 256, 3, 3),
|
||||
#(8, 256, 32, 32, 512, 3, 3),
|
||||
#(8, 512, 32, 32, 1024, 3, 3)
|
||||
]
|
||||
for N, C, H, W, K, R, S in NCHWKRS:
|
||||
shift_h = np.random.randint(R, size=C, dtype=np.int32) - R//2
|
||||
shift_w = np.random.randint(S, size=C, dtype=np.int32) - S//2
|
||||
def shift_conv(a, b, **kwargs):
|
||||
shift_h, shift_w = kwargs['sh'], kwargs['sw']
|
||||
shift_torch = np.column_stack((shift_w*-1, shift_h*-1))
|
||||
shift_torch = torch.from_numpy(shift_torch).cuda()
|
||||
a = shift.apply(a, shift_torch)
|
||||
b = b.permute(1, 0)
|
||||
b = b.reshape(b.shape[0], b.shape[1], 1, 1)
|
||||
return torch.nn.functional.conv2d(a, b)
|
||||
configs += [([N, C, H, W],
|
||||
[C, K],
|
||||
[N, K, H, W],
|
||||
shift_conv,
|
||||
'nc(h + sh[c])(w + sw[c]),ck->nkhw',
|
||||
{'sh': shift_h, 'sw': shift_w})]
|
||||
|
||||
# Benchmark
|
||||
torch.set_num_threads(1)
|
||||
for a_shape, b_shape, c_shape, torch_fn, expr, arrays in configs:
|
||||
dtype = torch.cuda.FloatTensor
|
||||
# initialize input tensors
|
||||
a = torch.rand(*a_shape).type(dtype).cuda()
|
||||
b = torch.rand(*b_shape).type(dtype).cuda()
|
||||
# triton output
|
||||
tc = triton.ops.einsum(expr, a, b, c_shape, arrays = arrays, bench = True)
|
||||
# reference output
|
||||
if torch_fn:
|
||||
rc = torch_fn(a, b, **arrays)
|
||||
else:
|
||||
rc = torch.einsum(expr, a, b)
|
||||
# performance relative to equivalent matrix multiplication
|
||||
ctx = triton.ctx_registry[tc]
|
||||
B, M, N, K = ctx.matmul_B, ctx.matmul_M, ctx.matmul_N, ctx.matmul_K
|
||||
cmp_eqbmm = True
|
||||
if cmp_eqbmm:
|
||||
a = torch.rand(B, M, K).type(dtype).cuda()
|
||||
b = torch.rand(B, K, N).type(dtype).cuda()
|
||||
tmmc = triton.ops.einsum('bmk,bkn->bmn', a, b, [B, M, N], bench = True)
|
||||
ratio = triton.bench_registry[tmmc] / triton.bench_registry[tc]
|
||||
cmp_str = f'({ratio:4.2f})'
|
||||
else:
|
||||
cmp_str = ''
|
||||
# test and benchmark
|
||||
bench = 2. * B * M * N * K / triton.bench_registry[tc] * 1e-3
|
||||
diff = (tc - rc).abs().max() / rc.abs().max()
|
||||
print(f'{expr:>15}; {str(a_shape):>20}; {str(b_shape):>20}; {bench:4.2f} {cmp_str}; {diff:4.2f}')
|
42
python/examples/kernels/shift_cuda.cpp
Normal file
42
python/examples/kernels/shift_cuda.cpp
Normal file
@@ -0,0 +1,42 @@
|
||||
#include <torch/torch.h>
|
||||
|
||||
#include <vector>
|
||||
|
||||
// CUDA forward declarations
|
||||
|
||||
at::Tensor shift_cuda_forward(
|
||||
const at::Tensor input,
|
||||
const at::Tensor shift);
|
||||
|
||||
at::Tensor shift_cuda_backward(
|
||||
const at::Tensor grad_input,
|
||||
const at::Tensor shift);
|
||||
|
||||
// C++ interface
|
||||
|
||||
// NOTE: AT_ASSERT has become AT_CHECK on master after 0.4.
|
||||
#define CHECK_CUDA(x) AT_ASSERTM(x.type().is_cuda(), #x " must be a CUDA tensor")
|
||||
#define CHECK_CONTIGUOUS(x) AT_ASSERTM(x.is_contiguous(), #x " must be contiguous")
|
||||
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
|
||||
|
||||
at::Tensor shift_forward(
|
||||
const at::Tensor input,
|
||||
const at::Tensor shift) {
|
||||
CHECK_INPUT(input);
|
||||
CHECK_INPUT(shift);
|
||||
|
||||
return shift_cuda_forward(input, shift);
|
||||
}
|
||||
|
||||
at::Tensor shift_backward(
|
||||
const at::Tensor grad_input,
|
||||
const at::Tensor shift) {
|
||||
CHECK_INPUT(grad_input);
|
||||
CHECK_INPUT(shift);
|
||||
return shift_cuda_backward(grad_input, shift);
|
||||
}
|
||||
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def("forward", &shift_forward, "Shift forward (CUDA)");
|
||||
m.def("backward", &shift_backward, "Shift backward (CUDA)");
|
||||
}
|
111
python/examples/kernels/shift_cuda_kernel.cu
Normal file
111
python/examples/kernels/shift_cuda_kernel.cu
Normal file
@@ -0,0 +1,111 @@
|
||||
#include <ATen/ATen.h>
|
||||
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
#include <vector>
|
||||
|
||||
namespace {
|
||||
template <typename scalar_t>
|
||||
__global__ void shift_cuda_forward_kernel(
|
||||
const scalar_t* __restrict__ input,
|
||||
const int32_t* __restrict__ shift,
|
||||
scalar_t* __restrict__ output,
|
||||
const int32_t B,
|
||||
const int32_t C,
|
||||
const int32_t H,
|
||||
const int32_t W) {
|
||||
const int32_t idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int32_t size = B*C*H*W;
|
||||
|
||||
const int32_t CHW = C*H*W;
|
||||
const int32_t HW = H*W;
|
||||
const int32_t b = idx / CHW;
|
||||
const int32_t c = (idx - b*CHW) / HW;
|
||||
const int32_t h = (idx - b*CHW - c*HW) / W;
|
||||
const int32_t w = idx - b*CHW - c*HW - h*W;
|
||||
const int32_t target_w = w + shift[2*c];
|
||||
const int32_t target_h = h + shift[2*c + 1];
|
||||
const int32_t target_idx = b*CHW + c*HW + target_h*W + target_w;
|
||||
if (idx < size && target_w >= 0 && target_w < W && target_h >= 0 && target_h < H) {
|
||||
output[target_idx] = input[idx];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__global__ void shift_cuda_backward_kernel(
|
||||
const scalar_t* __restrict__ grad_input,
|
||||
scalar_t* __restrict__ grad_output,
|
||||
const int32_t* __restrict__ shift,
|
||||
const int32_t B,
|
||||
const int32_t C,
|
||||
const int32_t W,
|
||||
const int32_t H) {
|
||||
const int32_t idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int32_t size = B*C*W*H;
|
||||
const int32_t CWH = C*W*H;
|
||||
const int32_t WH = W*H;
|
||||
const int32_t b = idx / CWH;
|
||||
const int32_t c = (idx - b*CWH) / WH;
|
||||
const int32_t w = (idx - b*CWH - c*WH) / W;
|
||||
const int32_t h = idx - b*CWH - c*WH - w*H;
|
||||
const int32_t target_w = w - shift[2*c];
|
||||
const int32_t target_h = h - shift[2*c + 1];
|
||||
const int32_t target_idx = b*CWH + c*WH + target_w*W + target_h;
|
||||
if (idx < size && target_w >= 0 && target_w < W && target_h >= 0 && target_h < H) {
|
||||
grad_output[target_idx] = grad_input[idx];
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
|
||||
at::Tensor shift_cuda_forward(
|
||||
const at::Tensor input,
|
||||
const at::Tensor shift) {
|
||||
const auto B = input.size(0);
|
||||
const auto C = input.size(1);
|
||||
const auto H = input.size(2);
|
||||
const auto W = input.size(3);
|
||||
const auto size = B*C*W*H;
|
||||
const int threads = 1024;
|
||||
const int blocks = (size + threads - 1) / threads;
|
||||
auto output = at::zeros_like(input);
|
||||
|
||||
AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.type(), "shift_forward_cuda", ([&] {
|
||||
shift_cuda_forward_kernel<scalar_t><<<blocks, threads>>>(
|
||||
input.data<scalar_t>(),
|
||||
shift.data<int32_t>(),
|
||||
output.data<scalar_t>(),
|
||||
B,
|
||||
C,
|
||||
H,
|
||||
W);
|
||||
}));
|
||||
|
||||
return output;
|
||||
}
|
||||
|
||||
at::Tensor shift_cuda_backward(
|
||||
const at::Tensor grad_input,
|
||||
const at::Tensor shift) {
|
||||
const auto B = grad_input.size(0);
|
||||
const auto C = grad_input.size(1);
|
||||
const auto H = grad_input.size(2);
|
||||
const auto W = grad_input.size(3);
|
||||
const auto size = B*C*W*H;
|
||||
const int threads = 1024;
|
||||
const int blocks = (size + threads - 1) / threads;
|
||||
auto grad_output = at::zeros_like(grad_input);
|
||||
|
||||
AT_DISPATCH_FLOATING_TYPES_AND_HALF(grad_input.type(), "shift_backward_cuda", ([&] {
|
||||
shift_cuda_backward_kernel<scalar_t><<<blocks, threads>>>(
|
||||
grad_input.data<scalar_t>(),
|
||||
grad_output.data<scalar_t>(),
|
||||
shift.data<int32_t>(),
|
||||
B,
|
||||
C,
|
||||
H,
|
||||
W);
|
||||
}));
|
||||
|
||||
return grad_output;
|
||||
}
|
122
python/setup.py
Normal file
122
python/setup.py
Normal file
@@ -0,0 +1,122 @@
|
||||
import os
|
||||
import re
|
||||
import sys
|
||||
import sysconfig
|
||||
import platform
|
||||
import subprocess
|
||||
import distutils
|
||||
import glob
|
||||
from distutils.version import LooseVersion
|
||||
from setuptools import setup, Extension, find_packages
|
||||
from setuptools.command.build_ext import build_ext
|
||||
from setuptools.command.test import test as TestCommand
|
||||
import distutils.spawn
|
||||
|
||||
|
||||
def find_llvm():
|
||||
versions = ['9.0', '9', '90', '8.0', '8', '80']
|
||||
supported = ['llvm-config-{v}'.format(v=v) for v in versions]
|
||||
paths = [distutils.spawn.find_executable(cfg) for cfg in supported]
|
||||
paths = [p for p in paths if p is not None]
|
||||
if paths:
|
||||
return paths[0]
|
||||
config = distutils.spawn.find_executable('llvm-config')
|
||||
instructions = 'Please install llvm-{8, 9, 10}-dev'
|
||||
if config is None:
|
||||
raise RuntimeError('Could not find llvm-config. ' + instructions)
|
||||
version = os.popen('{config} --version'.format(config=config)).read()
|
||||
raise RuntimeError('Version {v} not supported. '.format(v=version) + instructions)
|
||||
|
||||
|
||||
class CMakeExtension(Extension):
|
||||
def __init__(self, name, path, sourcedir=''):
|
||||
Extension.__init__(self, name, sources=[])
|
||||
self.sourcedir = os.path.abspath(sourcedir)
|
||||
self.path = path
|
||||
|
||||
|
||||
class CMakeBuild(build_ext):
|
||||
|
||||
def run(self):
|
||||
try:
|
||||
out = subprocess.check_output(['cmake', '--version'])
|
||||
except OSError:
|
||||
raise RuntimeError("CMake must be installed to build the following extensions: " +
|
||||
", ".join(e.name for e in self.extensions))
|
||||
|
||||
if platform.system() == "Windows":
|
||||
cmake_version = LooseVersion(re.search(r'version\s*([\d.]+)', out.decode()).group(1))
|
||||
if cmake_version < '3.1.0':
|
||||
raise RuntimeError("CMake >= 3.1.0 is required on Windows")
|
||||
|
||||
for ext in self.extensions:
|
||||
self.build_extension(ext)
|
||||
|
||||
def build_extension(self, ext):
|
||||
self.debug = True
|
||||
extdir = os.path.abspath(os.path.dirname(self.get_ext_fullpath(ext.path)))
|
||||
# python directories
|
||||
python_include_dirs = distutils.sysconfig.get_python_inc()
|
||||
python_lib_dirs = distutils.sysconfig.get_config_var('LIBDIR')
|
||||
cmake_args = ['-DCMAKE_LIBRARY_OUTPUT_DIRECTORY=' + extdir,
|
||||
'-DBUILD_TESTS=OFF',
|
||||
'-DBUILD_PYTHON_MODULE=ON',
|
||||
'-DPYTHON_INCLUDE_DIRS=' + python_include_dirs,
|
||||
'-DLLVM_CONFIG=' + find_llvm()]
|
||||
# tensorflow compatibility
|
||||
try:
|
||||
import tensorflow as tf
|
||||
tf_abi = tf.__cxx11_abi_flag__ if "__cxx11_abi_flag__" in tf.__dict__ else 0
|
||||
tf_include_dirs = tf.sysconfig.get_include()
|
||||
tf_libs = tf.sysconfig.get_link_flags()[1].replace('-l', '')
|
||||
cmake_args += ['-DTF_INCLUDE_DIRS=' + tf_include_dirs,
|
||||
'-DTF_LIB_DIRS=' + tf.sysconfig.get_lib(),
|
||||
'-DTF_LIBS=' + tf_libs,
|
||||
'-DTF_ABI=' + str(tf_abi)]
|
||||
except ModuleNotFoundError:
|
||||
pass
|
||||
|
||||
cfg = 'Debug' if self.debug else 'Release'
|
||||
cfg = 'Release'
|
||||
build_args = ['--config', cfg]
|
||||
|
||||
if platform.system() == "Windows":
|
||||
cmake_args += ['-DCMAKE_LIBRARY_OUTPUT_DIRECTORY_{}={}'.format(cfg.upper(), extdir)]
|
||||
if sys.maxsize > 2**32:
|
||||
cmake_args += ['-A', 'x64']
|
||||
build_args += ['--', '/m']
|
||||
else:
|
||||
cmake_args += ['-DCMAKE_BUILD_TYPE=' + cfg]
|
||||
build_args += ['--', '-j4']
|
||||
|
||||
env = os.environ.copy()
|
||||
env['CXXFLAGS'] = '{} -DVERSION_INFO=\\"{}\\"'.format(env.get('CXXFLAGS', ''),
|
||||
self.distribution.get_version())
|
||||
if not os.path.exists(self.build_temp):
|
||||
os.makedirs(self.build_temp)
|
||||
sourcedir = os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir))
|
||||
subprocess.check_call(['cmake', sourcedir] + cmake_args, cwd=self.build_temp, env=env)
|
||||
subprocess.check_call(['cmake', '--build', '.'] + build_args, cwd=self.build_temp)
|
||||
|
||||
|
||||
find_llvm()
|
||||
|
||||
directories = [x[0] for x in os.walk(os.path.join(os.path.pardir, 'include'))]
|
||||
data = []
|
||||
for d in directories:
|
||||
files = glob.glob(os.path.join(d, '*.h'), recursive=False)
|
||||
data += [os.path.relpath(f, os.path.pardir) for f in files]
|
||||
|
||||
setup(
|
||||
name='triton',
|
||||
version='0.1',
|
||||
author='Philippe Tillet',
|
||||
author_email='ptillet@g.harvard.edu',
|
||||
description='A language and compiler for custom Deep Learning operations',
|
||||
long_description='',
|
||||
packages=['triton', 'triton/_C', 'triton/ops'],
|
||||
package_data={'': data},
|
||||
ext_modules=[CMakeExtension('triton', 'triton/_C/')],
|
||||
cmdclass=dict(build_ext=CMakeBuild),
|
||||
zip_safe=False,
|
||||
)
|
642
python/src/bindings.cc
Normal file
642
python/src/bindings.cc
Normal file
@@ -0,0 +1,642 @@
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/buffer_info.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/functional.h>
|
||||
#include <string>
|
||||
#include <regex>
|
||||
#include <algorithm>
|
||||
#include "triton/runtime/function.h"
|
||||
#include "triton/lang/code_gen.h"
|
||||
#include "triton/lang/parser.h"
|
||||
#include "triton/lang/cpp.h"
|
||||
#include "triton/driver/device.h"
|
||||
#include "triton/driver/stream.h"
|
||||
#include "triton/driver/kernel.h"
|
||||
#include "triton/driver/module.h"
|
||||
#include "triton/ir/module.h"
|
||||
#include "triton/ir/function.h"
|
||||
#include "triton/tools/bench.hpp"
|
||||
|
||||
using namespace triton;
|
||||
|
||||
namespace rt = triton::runtime;
|
||||
|
||||
std::map<size_t, std::shared_ptr<rt::function::grid_fn_ty>> id_grid_map;
|
||||
std::map<size_t, std::shared_ptr<rt::function>> id_fn_map;
|
||||
std::map<size_t, double> fp64scalar_map;
|
||||
std::map<size_t, int64_t> i64scalar_map;
|
||||
|
||||
/* Grid map */
|
||||
|
||||
void register_grid(size_t id,
|
||||
const rt::function::grid_fn_ty& grid_fn) {
|
||||
id_grid_map[id].reset(new rt::function::grid_fn_ty(grid_fn));
|
||||
}
|
||||
|
||||
void delete_grid(size_t id) {
|
||||
id_grid_map.erase(id);
|
||||
}
|
||||
|
||||
/* Function map */
|
||||
|
||||
void register_fn(size_t id,
|
||||
const std::string& src,
|
||||
const rt::function::options_space_t& opt) {
|
||||
id_fn_map[id].reset(new rt::function(src, opt));
|
||||
}
|
||||
|
||||
void delete_fn(size_t id) {
|
||||
id_fn_map.erase(id);
|
||||
}
|
||||
|
||||
void register_cst(size_t id, const std::string& name, pybind11::buffer& data) {
|
||||
pybind11::buffer_info info = data.request();
|
||||
id_fn_map[id]->set_cst(name, info.ptr, info.size*info.itemsize);
|
||||
}
|
||||
|
||||
void cleanup() {
|
||||
id_grid_map.clear();
|
||||
id_fn_map.clear();
|
||||
i64scalar_map.clear();
|
||||
}
|
||||
|
||||
size_t make_op_id() {
|
||||
return id_fn_map.size();
|
||||
}
|
||||
|
||||
/* TF scalar wrapper */
|
||||
size_t make_scalar_id() {
|
||||
size_t ret = i64scalar_map.size();
|
||||
i64scalar_map[ret] = int64_t();
|
||||
return ret;
|
||||
}
|
||||
|
||||
bool has_scalar(size_t id) {
|
||||
return i64scalar_map.find(id) != i64scalar_map.end();
|
||||
}
|
||||
|
||||
int64_t retrieve_scalar(size_t id) {
|
||||
return i64scalar_map.at(id);
|
||||
}
|
||||
|
||||
/* TF source-code generation */
|
||||
|
||||
inline std::string to_tf_ty(ir::type *ty) {
|
||||
if(ty->is_integer_ty(1))
|
||||
return "bool";
|
||||
if(ty->is_integer_ty(8))
|
||||
return "int8";
|
||||
if(ty->is_integer_ty(16))
|
||||
return "int16";
|
||||
if(ty->is_integer_ty(32))
|
||||
return "int32";
|
||||
if(ty->is_integer_ty(64))
|
||||
return "int64";
|
||||
if(ty->is_half_ty())
|
||||
return "float16";
|
||||
if(ty->is_float_ty())
|
||||
return "float";
|
||||
if(ty->is_double_ty())
|
||||
return "double";
|
||||
if(ty->is_pointer_ty())
|
||||
return "Tensor";
|
||||
throw std::runtime_error("unknown type");
|
||||
}
|
||||
|
||||
inline std::string to_tf_scalar_ty(ir::type *ty) {
|
||||
if(ty->is_pointer_ty())
|
||||
return to_tf_ty(ty->get_pointer_element_ty());
|
||||
else {
|
||||
return to_tf_ty(ty);
|
||||
}
|
||||
}
|
||||
|
||||
inline std::string ref_to_tf_ty(ir::type *ty) {
|
||||
std::string res = to_tf_ty(ty);
|
||||
if(ty->is_pointer_ty())
|
||||
res = "const " + res + "&";
|
||||
return res;
|
||||
}
|
||||
|
||||
std::string tf_normalize(const std::string& name) {
|
||||
std::string ret = name;
|
||||
auto tolower = [](char c) { return std::tolower(c);};
|
||||
std::transform(ret.begin(), ret.end(), ret.begin(), tolower);
|
||||
return ret;
|
||||
}
|
||||
|
||||
struct tf_alloc_t{
|
||||
enum type_t{
|
||||
OUTPUT,
|
||||
TEMP
|
||||
};
|
||||
|
||||
tf_alloc_t(const std::string& _name, type_t _type)
|
||||
: name(_name), type(_type), tf_name(tf_normalize(_name)){ }
|
||||
|
||||
std::string tf_name;
|
||||
std::string name;
|
||||
type_t type;
|
||||
size_t shape_id;
|
||||
};
|
||||
|
||||
typedef std::vector<tf_alloc_t> alloc_map_t;
|
||||
|
||||
|
||||
void gen_extract_inputs(std::ostream &os, const std::vector<ir::argument*>& args, const alloc_map_t& allocs) {
|
||||
for(unsigned i = 0; i < args.size(); i++){
|
||||
ir::value *arg = args[i];
|
||||
const std::string& name = arg->get_name();
|
||||
std::string ty = to_tf_ty(arg->get_type());
|
||||
if(!arg->get_type()->is_pointer_ty())
|
||||
os << " " << ty << " " << name << " = context->input(" << i << ").scalar<" << ty << ">()();\n ";
|
||||
else if(std::find_if(allocs.begin(), allocs.end(),
|
||||
[&](tf_alloc_t x) {
|
||||
return x.name == name;
|
||||
}) == allocs.end())
|
||||
os << " const Tensor* " << name << " = &context->input(" << i << ");\n ";
|
||||
else
|
||||
os << " Tensor* " << name << " = nullptr;\n ";
|
||||
}
|
||||
}
|
||||
|
||||
void gen_set_outputs(std::ostream &os, const std::vector<ir::argument*>& args, const alloc_map_t& allocs) {
|
||||
// initialize shapes
|
||||
for(const auto& x: allocs)
|
||||
os << " TensorShape " << x.name << "_shape;\n ";
|
||||
for(const auto& x: allocs)
|
||||
os << " const Tensor& " << x.name << "_shape_tensor = context->input(" << x.shape_id << ");\n ";
|
||||
for(const auto& x: allocs)
|
||||
os << " const int32* " << x.name << "_shape_data = (const int32*)" << x.name << "_shape_tensor.tensor_data().data();\n ";
|
||||
for(const auto& x: allocs)
|
||||
os << " size_t " << x.name << "_rank = " << x.name << "_shape_tensor.dim_size(0);\n ";
|
||||
for(const auto& x: allocs)
|
||||
os << " for(size_t d = 0; d < " << x.name << "_rank ; d++) "
|
||||
<< x.name << "_shape.AddDim(" << x.name << "_shape_data[d]);\n ";
|
||||
|
||||
// allocate
|
||||
int output = 0;
|
||||
for(const auto& x: allocs){
|
||||
if(x.type == tf_alloc_t::OUTPUT)
|
||||
os << " OP_REQUIRES_OK(context, context->allocate_output(" << output++ << ", " << x.name << "_shape, &" << x.name << "));\n ";
|
||||
else
|
||||
os << " OP_REQUIRES_OK(context, context->allocate_temp(" << x.name << "_type, " << x.name << "_shape, " << x.name << "));\n ";
|
||||
}
|
||||
}
|
||||
|
||||
void gen_make_handles(std::ostream &os, const std::vector<ir::argument*>& args) {
|
||||
for(unsigned i = 0; i < args.size(); i++){
|
||||
ir::argument *arg = args[i];
|
||||
if(!arg->get_type()->is_pointer_ty())
|
||||
continue;
|
||||
const std::string& name = arg->get_name();
|
||||
os << " drv::cu_buffer cu_" + name + "(ctx, " + name + "->tensor_data().size(), (CUdeviceptr)" + name + "->tensor_data().data(), false);\n ";
|
||||
}
|
||||
}
|
||||
|
||||
void gen_make_launch_function(std::ostream &os, const std::vector<ir::argument*>& args) {
|
||||
os << " std::function<void()> run = [&](){\n ";
|
||||
os << " (*id_fn_map.at(id_))({";
|
||||
for(unsigned i = 0; i < args.size() ; i++){
|
||||
ir::argument *arg = args[i];
|
||||
std::string name = arg->get_name();
|
||||
if(arg->get_type()->is_pointer_ty())
|
||||
name = "&cu_" + name;
|
||||
if(i > 0)
|
||||
os << ", ";
|
||||
os << name;
|
||||
}
|
||||
os << "}, *id_grid_map.at(id_), stream);\n ";
|
||||
os << " };\n ";
|
||||
os << " run();\n ";
|
||||
os << " if(bench_ > 0)\n ";
|
||||
os << " i64scalar_map[bench_id_] = triton::tools::bench(run, stream);\n ";
|
||||
}
|
||||
|
||||
void gen_tf_register_kernel_builder(std::ostream &os, const std::string &name,
|
||||
const std::string &opname,
|
||||
const std::vector<ir::argument*>& args,
|
||||
const alloc_map_t& allocs){
|
||||
|
||||
os << "REGISTER_KERNEL_BUILDER(Name(\"" + name + "\").Device(DEVICE_GPU)";
|
||||
for(size_t i = 0; i < args.size(); i++){
|
||||
ir::argument *arg = args[i];
|
||||
std::string name = tf_normalize(arg->get_name());
|
||||
if(!arg->get_type()->is_pointer_ty())
|
||||
os << ".HostMemory(\"" + name + "\")";
|
||||
}
|
||||
for(const auto& x: allocs)
|
||||
os << ".HostMemory(\"" << x.tf_name << "_shape\")";
|
||||
os << ", " + opname << ");\n";
|
||||
}
|
||||
|
||||
void gen_tf_register_op(std::ostream &os, const std::string &name,
|
||||
const std::vector<ir::argument*>& args,
|
||||
const alloc_map_t& allocs){
|
||||
|
||||
|
||||
os << "REGISTER_OP(\"" << name << "\")\n";
|
||||
for(size_t i = 0; i < args.size(); i++)
|
||||
os << " .Attr(\"T" << i << " : {bool, int8, int16, int32, int64, float16, float32, float64}\")" << std::endl;
|
||||
for(size_t i = 0; i < args.size(); i++){
|
||||
ir::argument *arg = args[i];
|
||||
std::string name = tf_normalize(arg->get_name());
|
||||
if(std::find_if(allocs.begin(), allocs.end(),
|
||||
[&](tf_alloc_t x) {
|
||||
return name == x.tf_name;
|
||||
}) == allocs.end())
|
||||
os << " .Input(\"" << name << ": T" << i << "\")\n";
|
||||
else
|
||||
os << " .Input(\"" << name << "_shape: int32\")\n";
|
||||
}
|
||||
for(const auto& x: allocs)
|
||||
if(x.type == tf_alloc_t::OUTPUT)
|
||||
os << " .Output(\"" << x.tf_name << ": T" << x.shape_id << "\")\n";
|
||||
os << " .Attr(\"id: int\")\n";
|
||||
os << " .Attr(\"bench: int\")\n";
|
||||
os << " .Attr(\"bench_id: int\")\n";
|
||||
os << " .SetShapeFn([](::tensorflow::shape_inference::InferenceContext* ctx) {\n";
|
||||
size_t current = 0;
|
||||
for(const auto& x: allocs)
|
||||
if(x.type == tf_alloc_t::OUTPUT){
|
||||
os << " shape_inference::ShapeHandle " << x.tf_name << "_handle;\n";
|
||||
os << " ctx->MakeShapeFromShapeTensor(" << x.shape_id << ", &" << x.tf_name << "_handle);\n";
|
||||
os << " ctx->set_output(" << current++ << ", " << x.tf_name << "_handle);\n";
|
||||
}
|
||||
os << " return Status::OK();\n";
|
||||
os << " })\n";
|
||||
|
||||
os << ";\n";
|
||||
}
|
||||
|
||||
void make_module(const std::string& src, ir::module* ir,
|
||||
const runtime::function::options_space_t& opt) {
|
||||
std::string copy = triton::runtime::function::preheader() + src;
|
||||
// pre-process
|
||||
TokenSequence tokens;
|
||||
Preprocessor cpp(©, true);
|
||||
for(auto it: opt.defines){
|
||||
cpp.AddMacro(it.first, &it.second[0]);
|
||||
}
|
||||
cpp.Process(tokens);
|
||||
// parse
|
||||
Parser parser(tokens);
|
||||
parser.Parse();
|
||||
Generator gen(&parser);
|
||||
gen.Gen(ir);
|
||||
}
|
||||
|
||||
std::tuple<std::string,
|
||||
std::string> make_tensorflow_src(const std::string& src,
|
||||
const std::vector<std::string>& outputs,
|
||||
const std::vector<std::string>& tmp,
|
||||
const runtime::function::options_space_t& opt)
|
||||
{
|
||||
// triton-ir code-gen
|
||||
ir::context ctx;
|
||||
auto ir = std::shared_ptr<ir::module>(new ir::module("", ctx));
|
||||
make_module(src, &*ir, opt);
|
||||
|
||||
// function
|
||||
ir::function* fn = ir->get_function_list().front();
|
||||
const std::vector<ir::argument*>& args = fn->args();
|
||||
std::string name = fn->get_name();
|
||||
std::string cc_name = name;
|
||||
cc_name[0] = static_cast<char>(std::toupper(cc_name[0]));
|
||||
std::string opname = cc_name + "Op";
|
||||
|
||||
// allocation info
|
||||
alloc_map_t allocs;
|
||||
for(size_t i = 0; i < outputs.size(); i++)
|
||||
allocs.push_back(tf_alloc_t(outputs[i], tf_alloc_t::OUTPUT));
|
||||
for(size_t i = 0; i < tmp.size(); i++)
|
||||
allocs.push_back(tf_alloc_t(tmp[i], tf_alloc_t::TEMP));
|
||||
|
||||
for(auto &x: allocs){
|
||||
size_t idx;
|
||||
for(idx = 0; idx < args.size(); idx++)
|
||||
if(args[idx]->get_name() == x.name)
|
||||
break;
|
||||
if(idx == args.size())
|
||||
throw std::runtime_error("unknown output");
|
||||
x.shape_id = idx;
|
||||
}
|
||||
|
||||
std::ostringstream oss;
|
||||
oss << R"(
|
||||
#include "triton/driver/buffer.h"
|
||||
#include "triton/driver/backend.h"
|
||||
#include "triton/driver/stream.h"
|
||||
#include "triton/runtime/function.h"
|
||||
#include "triton/tools/bench.hpp"
|
||||
|
||||
#define EIGEN_USE_GPU
|
||||
#include "tensorflow/core/framework/op.h"
|
||||
#include "tensorflow/core/framework/shape_inference.h"
|
||||
#include "tensorflow/core/framework/op_kernel.h"
|
||||
|
||||
using namespace tensorflow;
|
||||
using GPUDevice = Eigen::GpuDevice;
|
||||
namespace rt = triton::runtime;
|
||||
namespace drv = triton::driver;
|
||||
|
||||
extern std::map<size_t, std::shared_ptr<rt::function::grid_fn_ty>> id_grid_map;
|
||||
extern std::map<size_t, std::shared_ptr<rt::function>> id_fn_map;
|
||||
extern std::map<size_t, int64_t> i64scalar_map;
|
||||
|
||||
class )" << opname << R"(: public OpKernel {
|
||||
public:
|
||||
explicit )" << opname << R"((OpKernelConstruction* context)
|
||||
: OpKernel(context) {
|
||||
OP_REQUIRES_OK(context, context->GetAttr("id", &id_));
|
||||
OP_REQUIRES_OK(context, context->GetAttr("bench", &bench_));
|
||||
OP_REQUIRES_OK(context, context->GetAttr("bench_id", &bench_id_));
|
||||
)";
|
||||
for(const auto& alloc: allocs)
|
||||
oss << " OP_REQUIRES_OK(context, context->GetAttr(\"T" << alloc.shape_id << "\", &" << alloc.name << "_type));\n ";
|
||||
|
||||
oss << R"(
|
||||
}
|
||||
|
||||
void Compute(OpKernelContext* context){
|
||||
|
||||
// get device/stream
|
||||
GPUDevice device = context->eigen_device<GPUDevice>();
|
||||
drv::cu_stream sstream(device.stream(), false);
|
||||
drv::context* ctx = sstream.context();
|
||||
drv::stream* stream = &sstream;
|
||||
|
||||
// extract inputs
|
||||
)";
|
||||
gen_extract_inputs(oss, args, allocs);
|
||||
oss << R"(
|
||||
// set outputs
|
||||
)";
|
||||
gen_set_outputs(oss, args, allocs);
|
||||
oss << R"(
|
||||
// wrap tensors
|
||||
)";
|
||||
gen_make_handles(oss, args);
|
||||
oss << R"(
|
||||
)";
|
||||
oss << R"(
|
||||
// launch function
|
||||
)";
|
||||
gen_make_launch_function(oss, args);
|
||||
oss << R"(
|
||||
}
|
||||
|
||||
private:
|
||||
int id_;
|
||||
int bench_;
|
||||
int64 bench_id_;
|
||||
)";
|
||||
for(const auto& alloc: allocs)
|
||||
oss << "DataType " << alloc.name << "_type;\n ";
|
||||
|
||||
oss << R"(
|
||||
};
|
||||
|
||||
// register kernel builder
|
||||
)";
|
||||
gen_tf_register_kernel_builder(oss, cc_name, opname, args, allocs);
|
||||
oss << R"(
|
||||
// register op
|
||||
)";
|
||||
gen_tf_register_op(oss, cc_name, args, allocs);
|
||||
|
||||
return {oss.str(), name};
|
||||
}
|
||||
|
||||
|
||||
inline std::string to_torch_ty(ir::type *ty) {
|
||||
if(ty->is_integer_ty())
|
||||
return "int64_t";
|
||||
if(ty->is_half_ty())
|
||||
return "double";
|
||||
if(ty->is_float_ty())
|
||||
return "double";
|
||||
if(ty->is_double_ty())
|
||||
return "double";
|
||||
if(ty->is_pointer_ty())
|
||||
return "torch::Tensor";
|
||||
throw std::runtime_error("unknown type");
|
||||
}
|
||||
|
||||
inline std::string to_c_ty(ir::type *ty) {
|
||||
if(ty->is_integer_ty(1))
|
||||
return "bool";
|
||||
if(ty->is_integer_ty(8))
|
||||
return "int8_t";
|
||||
if(ty->is_integer_ty(16))
|
||||
return "int16_t";
|
||||
if(ty->is_integer_ty(32))
|
||||
return "int32_t";
|
||||
if(ty->is_integer_ty(64))
|
||||
return "int64_t";
|
||||
if(ty->is_half_ty())
|
||||
return "half";
|
||||
if(ty->is_float_ty())
|
||||
return "float";
|
||||
if(ty->is_double_ty())
|
||||
return "double";
|
||||
if(ty->is_pointer_ty())
|
||||
return "drv::cu_buffer";
|
||||
throw std::runtime_error("unknown type");
|
||||
}
|
||||
|
||||
|
||||
|
||||
void gen_torch_signature(std::ostringstream& oss,
|
||||
ir::function* fn,
|
||||
const std::vector<std::string>& outputs,
|
||||
const std::string& name) {
|
||||
const auto& args = fn->args();
|
||||
std::vector<ir::type*> out_types;
|
||||
for(const std::string& out: outputs) {
|
||||
auto it = std::find_if(args.begin(), args.end(),
|
||||
[&](ir::argument* arg) { return arg->get_name() == out; });
|
||||
if(it == args.end())
|
||||
throw std::runtime_error("unknown argument");
|
||||
out_types.push_back((*it)->get_type());
|
||||
}
|
||||
|
||||
std::string ret_ty;
|
||||
if(out_types.empty())
|
||||
ret_ty = "void";
|
||||
else{
|
||||
ir::type* ty = out_types[0];
|
||||
ret_ty = to_torch_ty(ty);
|
||||
if(out_types.size() > 1){
|
||||
for(size_t i = 1; i < out_types.size(); i++)
|
||||
if(out_types[i] != ty)
|
||||
throw std::runtime_error("outputs of different types not supported by pytorch");
|
||||
ret_ty = "std::vector<" + ret_ty + ">";
|
||||
}
|
||||
}
|
||||
|
||||
oss << ret_ty << " " << name << "(";
|
||||
oss << "int64_t id, ";
|
||||
oss << "int64_t bench, ";
|
||||
oss << "int64_t bench_id, ";
|
||||
for(size_t i = 0; i < args.size(); i++) {
|
||||
ir::argument* arg = args[i];
|
||||
if(i > 0)
|
||||
oss << ", ";
|
||||
oss << to_torch_ty(arg->get_type()) << " " << arg->get_name();
|
||||
}
|
||||
oss << ")";
|
||||
}
|
||||
|
||||
void gen_torch_init_driver(std::ostringstream &oss,
|
||||
const std::vector<ir::argument*>&args) {
|
||||
ir::argument* tensor = nullptr;
|
||||
for(ir::argument* arg: args)
|
||||
if(arg->get_type()->is_pointer_ty()){
|
||||
tensor = arg;
|
||||
break;
|
||||
}
|
||||
oss << " // Wrap CUDA handles" << std::endl;
|
||||
oss << " c10::DeviceIndex device = " << tensor->get_name() << ".storage().device().index();" << std::endl;
|
||||
oss << " // Get stream" << std::endl;
|
||||
oss << " CUstream custream = (CUstream)at::cuda::getCurrentCUDAStream(device).stream();" << std::endl;
|
||||
oss << " triton::driver::cu_stream stream(custream, false);" << std::endl;
|
||||
oss << " triton::driver::context* ctx = stream.context();" << std::endl;
|
||||
}
|
||||
|
||||
void gen_torch_make_handles(std::ostream &os,
|
||||
const std::vector<ir::argument*>& args) {
|
||||
for(unsigned i = 0; i < args.size(); i++){
|
||||
ir::argument *arg = args[i];
|
||||
const std::string& name = arg->get_name();
|
||||
ir::type* ty = arg->get_type();
|
||||
if(!ty->is_pointer_ty())
|
||||
os << " " << to_c_ty(ty) << " arg_" << name << " = " << name << ";" << std::endl;
|
||||
else{
|
||||
os << " CHECK_INPUT(" << name << ");" << std::endl;
|
||||
os << " drv::cu_buffer arg_" + name + "(ctx, " + name + ".storage().size(), "
|
||||
" (CUdeviceptr)((char*)" + name + ".storage().data() + " + name + ".storage_offset() * " + name + ".itemsize()), false);" << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void gen_torch_make_launch_function(std::ostream &os, const std::vector<ir::argument*>& args) {
|
||||
os << " std::function<void()> run = [&](){\n ";
|
||||
os << " (*id_fn_map.at(id))({";
|
||||
for(unsigned i = 0; i < args.size() ; i++){
|
||||
ir::argument *arg = args[i];
|
||||
std::string name = "arg_" + arg->get_name();
|
||||
if(arg->get_type()->is_pointer_ty())
|
||||
name = "&" + name;
|
||||
if(i > 0)
|
||||
os << ", ";
|
||||
os << name;
|
||||
}
|
||||
os << "}, *id_grid_map.at(id), &stream);\n";
|
||||
os << " };\n";
|
||||
os << " run();\n";
|
||||
os << " if(bench > 0)\n ";
|
||||
os << " i64scalar_map[bench_id] = triton::tools::bench(run, &stream);\n ";
|
||||
}
|
||||
|
||||
void gen_torch_ret(std::ostream &os, const std::vector<std::string>& outputs) {
|
||||
if(outputs.size() == 1){
|
||||
os << " return " << outputs[0] << ";" << std::endl;
|
||||
return;
|
||||
}
|
||||
os << " return {";
|
||||
for(size_t i = 0; i < outputs.size(); i++){
|
||||
if(i > 0)
|
||||
os << ", ";
|
||||
os << outputs[i];
|
||||
}
|
||||
os << "};" << std::endl;
|
||||
}
|
||||
|
||||
std::tuple<std::string,
|
||||
std::string> make_torch_src(const std::string& src,
|
||||
const std::vector<std::string>& outputs,
|
||||
const std::vector<std::string>& tmp,
|
||||
const runtime::function::options_space_t& opt) {
|
||||
// triton-ir code-gen
|
||||
ir::context ctx;
|
||||
auto ir = std::shared_ptr<ir::module>(new ir::module("", ctx));
|
||||
make_module(src, &*ir, opt);
|
||||
// function
|
||||
ir::function* fn = ir->get_function_list().front();
|
||||
std::string name = fn->get_name();
|
||||
// generate framework code
|
||||
std::ostringstream oss;
|
||||
oss << R"(
|
||||
#include "triton/driver/buffer.h"
|
||||
#include "triton/driver/stream.h"
|
||||
#include "triton/runtime/function.h"
|
||||
#include "triton/tools/bench.hpp"
|
||||
#include "torch/script.h"
|
||||
#include "ATen/cuda/CUDAContext.h"
|
||||
|
||||
#define CHECK_CUDA(x) AT_ASSERTM(x.type().is_cuda(), #x " must be a CUDA tensor")
|
||||
#define CHECK_CONTIGUOUS(x) AT_ASSERTM(x.is_contiguous(), #x " must be contiguous")
|
||||
#define CHECK_INPUT(x) CHECK_CUDA(x);
|
||||
|
||||
namespace rt = triton::runtime;
|
||||
namespace drv = triton::driver;
|
||||
|
||||
extern std::map<size_t, std::shared_ptr<rt::function::grid_fn_ty>> id_grid_map;
|
||||
extern std::map<size_t, std::shared_ptr<rt::function>> id_fn_map;
|
||||
extern std::map<size_t, int64_t> i64scalar_map;
|
||||
|
||||
)";
|
||||
|
||||
gen_torch_signature(oss, fn, outputs, name);
|
||||
oss << " {" << std::endl;
|
||||
gen_torch_init_driver(oss, fn->args());
|
||||
gen_torch_make_handles(oss, fn->args());
|
||||
gen_torch_make_launch_function(oss, fn->args());
|
||||
gen_torch_ret(oss, outputs);
|
||||
oss << "}" << std::endl;
|
||||
|
||||
oss << std::endl;
|
||||
oss << std::endl;
|
||||
oss << "static auto registry = torch::RegisterOperators(\"triton::" << name << "\", &" << name << ");" << std::endl;
|
||||
|
||||
return {oss.str(), name};
|
||||
}
|
||||
|
||||
|
||||
typedef triton::runtime::function::options_t options_t;
|
||||
typedef triton::runtime::function::options_space_t options_space_t;
|
||||
|
||||
PYBIND11_MODULE(libtriton, m) {
|
||||
m.doc() = "Python bindings to the C++ Triton API";
|
||||
|
||||
// framework binding source code generation
|
||||
m.def("make_tensorflow_src", &make_tensorflow_src,
|
||||
"Creates C++ source code for a custom Tensorflow op "
|
||||
"corresponding to the specified Triton kernel");
|
||||
m.def("make_torch_src", &make_torch_src,
|
||||
"Creates C++ source code for a custom PyTorch op ");
|
||||
|
||||
// bindings for triton classes
|
||||
pybind11::class_<options_t>(m, "options")
|
||||
.def(pybind11::init<>())
|
||||
.def("d", &options_t::D<int>)
|
||||
.def_readonly("num_warps", &options_t::num_warps);
|
||||
|
||||
pybind11::class_<options_space_t>(m, "options_space")
|
||||
.def(pybind11::init<>())
|
||||
.def_readwrite("defines", &options_space_t::defines)
|
||||
.def_readwrite("num_warps", &options_space_t::num_warps);
|
||||
|
||||
// hooks into triton constructs since frameworks may not use pybind11
|
||||
m.def("register_grid", ®ister_grid);
|
||||
m.def("delete_grid", &delete_grid);
|
||||
m.def("register_fn", ®ister_fn);
|
||||
m.def("register_cst", ®ister_cst);
|
||||
m.def("delete_fn", &delete_fn);
|
||||
m.def("make_op_id", &make_op_id);
|
||||
m.def("make_scalar_id", &make_scalar_id);
|
||||
m.def("retrieve_scalar", &retrieve_scalar);
|
||||
m.def("cleanup", &cleanup);
|
||||
;
|
||||
}
|
493
python/src/pybind11/attr.h
Normal file
493
python/src/pybind11/attr.h
Normal file
@@ -0,0 +1,493 @@
|
||||
/*
|
||||
pybind11/attr.h: Infrastructure for processing custom
|
||||
type and function attributes
|
||||
|
||||
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
|
||||
|
||||
All rights reserved. Use of this source code is governed by a
|
||||
BSD-style license that can be found in the LICENSE file.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "cast.h"
|
||||
|
||||
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
|
||||
|
||||
/// \addtogroup annotations
|
||||
/// @{
|
||||
|
||||
/// Annotation for methods
|
||||
struct is_method { handle class_; is_method(const handle &c) : class_(c) { } };
|
||||
|
||||
/// Annotation for operators
|
||||
struct is_operator { };
|
||||
|
||||
/// Annotation for parent scope
|
||||
struct scope { handle value; scope(const handle &s) : value(s) { } };
|
||||
|
||||
/// Annotation for documentation
|
||||
struct doc { const char *value; doc(const char *value) : value(value) { } };
|
||||
|
||||
/// Annotation for function names
|
||||
struct name { const char *value; name(const char *value) : value(value) { } };
|
||||
|
||||
/// Annotation indicating that a function is an overload associated with a given "sibling"
|
||||
struct sibling { handle value; sibling(const handle &value) : value(value.ptr()) { } };
|
||||
|
||||
/// Annotation indicating that a class derives from another given type
|
||||
template <typename T> struct base {
|
||||
PYBIND11_DEPRECATED("base<T>() was deprecated in favor of specifying 'T' as a template argument to class_")
|
||||
base() { }
|
||||
};
|
||||
|
||||
/// Keep patient alive while nurse lives
|
||||
template <size_t Nurse, size_t Patient> struct keep_alive { };
|
||||
|
||||
/// Annotation indicating that a class is involved in a multiple inheritance relationship
|
||||
struct multiple_inheritance { };
|
||||
|
||||
/// Annotation which enables dynamic attributes, i.e. adds `__dict__` to a class
|
||||
struct dynamic_attr { };
|
||||
|
||||
/// Annotation which enables the buffer protocol for a type
|
||||
struct buffer_protocol { };
|
||||
|
||||
/// Annotation which requests that a special metaclass is created for a type
|
||||
struct metaclass {
|
||||
handle value;
|
||||
|
||||
PYBIND11_DEPRECATED("py::metaclass() is no longer required. It's turned on by default now.")
|
||||
metaclass() {}
|
||||
|
||||
/// Override pybind11's default metaclass
|
||||
explicit metaclass(handle value) : value(value) { }
|
||||
};
|
||||
|
||||
/// Annotation that marks a class as local to the module:
|
||||
struct module_local { const bool value; constexpr module_local(bool v = true) : value(v) { } };
|
||||
|
||||
/// Annotation to mark enums as an arithmetic type
|
||||
struct arithmetic { };
|
||||
|
||||
/** \rst
|
||||
A call policy which places one or more guard variables (``Ts...``) around the function call.
|
||||
|
||||
For example, this definition:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
m.def("foo", foo, py::call_guard<T>());
|
||||
|
||||
is equivalent to the following pseudocode:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
m.def("foo", [](args...) {
|
||||
T scope_guard;
|
||||
return foo(args...); // forwarded arguments
|
||||
});
|
||||
\endrst */
|
||||
template <typename... Ts> struct call_guard;
|
||||
|
||||
template <> struct call_guard<> { using type = detail::void_type; };
|
||||
|
||||
template <typename T>
|
||||
struct call_guard<T> {
|
||||
static_assert(std::is_default_constructible<T>::value,
|
||||
"The guard type must be default constructible");
|
||||
|
||||
using type = T;
|
||||
};
|
||||
|
||||
template <typename T, typename... Ts>
|
||||
struct call_guard<T, Ts...> {
|
||||
struct type {
|
||||
T guard{}; // Compose multiple guard types with left-to-right default-constructor order
|
||||
typename call_guard<Ts...>::type next{};
|
||||
};
|
||||
};
|
||||
|
||||
/// @} annotations
|
||||
|
||||
NAMESPACE_BEGIN(detail)
|
||||
/* Forward declarations */
|
||||
enum op_id : int;
|
||||
enum op_type : int;
|
||||
struct undefined_t;
|
||||
template <op_id id, op_type ot, typename L = undefined_t, typename R = undefined_t> struct op_;
|
||||
inline void keep_alive_impl(size_t Nurse, size_t Patient, function_call &call, handle ret);
|
||||
|
||||
/// Internal data structure which holds metadata about a keyword argument
|
||||
struct argument_record {
|
||||
const char *name; ///< Argument name
|
||||
const char *descr; ///< Human-readable version of the argument value
|
||||
handle value; ///< Associated Python object
|
||||
bool convert : 1; ///< True if the argument is allowed to convert when loading
|
||||
bool none : 1; ///< True if None is allowed when loading
|
||||
|
||||
argument_record(const char *name, const char *descr, handle value, bool convert, bool none)
|
||||
: name(name), descr(descr), value(value), convert(convert), none(none) { }
|
||||
};
|
||||
|
||||
/// Internal data structure which holds metadata about a bound function (signature, overloads, etc.)
|
||||
struct function_record {
|
||||
function_record()
|
||||
: is_constructor(false), is_new_style_constructor(false), is_stateless(false),
|
||||
is_operator(false), has_args(false), has_kwargs(false), is_method(false) { }
|
||||
|
||||
/// Function name
|
||||
char *name = nullptr; /* why no C++ strings? They generate heavier code.. */
|
||||
|
||||
// User-specified documentation string
|
||||
char *doc = nullptr;
|
||||
|
||||
/// Human-readable version of the function signature
|
||||
char *signature = nullptr;
|
||||
|
||||
/// List of registered keyword arguments
|
||||
std::vector<argument_record> args;
|
||||
|
||||
/// Pointer to lambda function which converts arguments and performs the actual call
|
||||
handle (*impl) (function_call &) = nullptr;
|
||||
|
||||
/// Storage for the wrapped function pointer and captured data, if any
|
||||
void *data[3] = { };
|
||||
|
||||
/// Pointer to custom destructor for 'data' (if needed)
|
||||
void (*free_data) (function_record *ptr) = nullptr;
|
||||
|
||||
/// Return value policy associated with this function
|
||||
return_value_policy policy = return_value_policy::automatic;
|
||||
|
||||
/// True if name == '__init__'
|
||||
bool is_constructor : 1;
|
||||
|
||||
/// True if this is a new-style `__init__` defined in `detail/init.h`
|
||||
bool is_new_style_constructor : 1;
|
||||
|
||||
/// True if this is a stateless function pointer
|
||||
bool is_stateless : 1;
|
||||
|
||||
/// True if this is an operator (__add__), etc.
|
||||
bool is_operator : 1;
|
||||
|
||||
/// True if the function has a '*args' argument
|
||||
bool has_args : 1;
|
||||
|
||||
/// True if the function has a '**kwargs' argument
|
||||
bool has_kwargs : 1;
|
||||
|
||||
/// True if this is a method
|
||||
bool is_method : 1;
|
||||
|
||||
/// Number of arguments (including py::args and/or py::kwargs, if present)
|
||||
std::uint16_t nargs;
|
||||
|
||||
/// Python method object
|
||||
PyMethodDef *def = nullptr;
|
||||
|
||||
/// Python handle to the parent scope (a class or a module)
|
||||
handle scope;
|
||||
|
||||
/// Python handle to the sibling function representing an overload chain
|
||||
handle sibling;
|
||||
|
||||
/// Pointer to next overload
|
||||
function_record *next = nullptr;
|
||||
};
|
||||
|
||||
/// Special data structure which (temporarily) holds metadata about a bound class
|
||||
struct type_record {
|
||||
PYBIND11_NOINLINE type_record()
|
||||
: multiple_inheritance(false), dynamic_attr(false), buffer_protocol(false),
|
||||
default_holder(true), module_local(false) { }
|
||||
|
||||
/// Handle to the parent scope
|
||||
handle scope;
|
||||
|
||||
/// Name of the class
|
||||
const char *name = nullptr;
|
||||
|
||||
// Pointer to RTTI type_info data structure
|
||||
const std::type_info *type = nullptr;
|
||||
|
||||
/// How large is the underlying C++ type?
|
||||
size_t type_size = 0;
|
||||
|
||||
/// What is the alignment of the underlying C++ type?
|
||||
size_t type_align = 0;
|
||||
|
||||
/// How large is the type's holder?
|
||||
size_t holder_size = 0;
|
||||
|
||||
/// The global operator new can be overridden with a class-specific variant
|
||||
void *(*operator_new)(size_t) = nullptr;
|
||||
|
||||
/// Function pointer to class_<..>::init_instance
|
||||
void (*init_instance)(instance *, const void *) = nullptr;
|
||||
|
||||
/// Function pointer to class_<..>::dealloc
|
||||
void (*dealloc)(detail::value_and_holder &) = nullptr;
|
||||
|
||||
/// List of base classes of the newly created type
|
||||
list bases;
|
||||
|
||||
/// Optional docstring
|
||||
const char *doc = nullptr;
|
||||
|
||||
/// Custom metaclass (optional)
|
||||
handle metaclass;
|
||||
|
||||
/// Multiple inheritance marker
|
||||
bool multiple_inheritance : 1;
|
||||
|
||||
/// Does the class manage a __dict__?
|
||||
bool dynamic_attr : 1;
|
||||
|
||||
/// Does the class implement the buffer protocol?
|
||||
bool buffer_protocol : 1;
|
||||
|
||||
/// Is the default (unique_ptr) holder type used?
|
||||
bool default_holder : 1;
|
||||
|
||||
/// Is the class definition local to the module shared object?
|
||||
bool module_local : 1;
|
||||
|
||||
PYBIND11_NOINLINE void add_base(const std::type_info &base, void *(*caster)(void *)) {
|
||||
auto base_info = detail::get_type_info(base, false);
|
||||
if (!base_info) {
|
||||
std::string tname(base.name());
|
||||
detail::clean_type_id(tname);
|
||||
pybind11_fail("generic_type: type \"" + std::string(name) +
|
||||
"\" referenced unknown base type \"" + tname + "\"");
|
||||
}
|
||||
|
||||
if (default_holder != base_info->default_holder) {
|
||||
std::string tname(base.name());
|
||||
detail::clean_type_id(tname);
|
||||
pybind11_fail("generic_type: type \"" + std::string(name) + "\" " +
|
||||
(default_holder ? "does not have" : "has") +
|
||||
" a non-default holder type while its base \"" + tname + "\" " +
|
||||
(base_info->default_holder ? "does not" : "does"));
|
||||
}
|
||||
|
||||
bases.append((PyObject *) base_info->type);
|
||||
|
||||
if (base_info->type->tp_dictoffset != 0)
|
||||
dynamic_attr = true;
|
||||
|
||||
if (caster)
|
||||
base_info->implicit_casts.emplace_back(type, caster);
|
||||
}
|
||||
};
|
||||
|
||||
inline function_call::function_call(const function_record &f, handle p) :
|
||||
func(f), parent(p) {
|
||||
args.reserve(f.nargs);
|
||||
args_convert.reserve(f.nargs);
|
||||
}
|
||||
|
||||
/// Tag for a new-style `__init__` defined in `detail/init.h`
|
||||
struct is_new_style_constructor { };
|
||||
|
||||
/**
|
||||
* Partial template specializations to process custom attributes provided to
|
||||
* cpp_function_ and class_. These are either used to initialize the respective
|
||||
* fields in the type_record and function_record data structures or executed at
|
||||
* runtime to deal with custom call policies (e.g. keep_alive).
|
||||
*/
|
||||
template <typename T, typename SFINAE = void> struct process_attribute;
|
||||
|
||||
template <typename T> struct process_attribute_default {
|
||||
/// Default implementation: do nothing
|
||||
static void init(const T &, function_record *) { }
|
||||
static void init(const T &, type_record *) { }
|
||||
static void precall(function_call &) { }
|
||||
static void postcall(function_call &, handle) { }
|
||||
};
|
||||
|
||||
/// Process an attribute specifying the function's name
|
||||
template <> struct process_attribute<name> : process_attribute_default<name> {
|
||||
static void init(const name &n, function_record *r) { r->name = const_cast<char *>(n.value); }
|
||||
};
|
||||
|
||||
/// Process an attribute specifying the function's docstring
|
||||
template <> struct process_attribute<doc> : process_attribute_default<doc> {
|
||||
static void init(const doc &n, function_record *r) { r->doc = const_cast<char *>(n.value); }
|
||||
};
|
||||
|
||||
/// Process an attribute specifying the function's docstring (provided as a C-style string)
|
||||
template <> struct process_attribute<const char *> : process_attribute_default<const char *> {
|
||||
static void init(const char *d, function_record *r) { r->doc = const_cast<char *>(d); }
|
||||
static void init(const char *d, type_record *r) { r->doc = const_cast<char *>(d); }
|
||||
};
|
||||
template <> struct process_attribute<char *> : process_attribute<const char *> { };
|
||||
|
||||
/// Process an attribute indicating the function's return value policy
|
||||
template <> struct process_attribute<return_value_policy> : process_attribute_default<return_value_policy> {
|
||||
static void init(const return_value_policy &p, function_record *r) { r->policy = p; }
|
||||
};
|
||||
|
||||
/// Process an attribute which indicates that this is an overloaded function associated with a given sibling
|
||||
template <> struct process_attribute<sibling> : process_attribute_default<sibling> {
|
||||
static void init(const sibling &s, function_record *r) { r->sibling = s.value; }
|
||||
};
|
||||
|
||||
/// Process an attribute which indicates that this function is a method
|
||||
template <> struct process_attribute<is_method> : process_attribute_default<is_method> {
|
||||
static void init(const is_method &s, function_record *r) { r->is_method = true; r->scope = s.class_; }
|
||||
};
|
||||
|
||||
/// Process an attribute which indicates the parent scope of a method
|
||||
template <> struct process_attribute<scope> : process_attribute_default<scope> {
|
||||
static void init(const scope &s, function_record *r) { r->scope = s.value; }
|
||||
};
|
||||
|
||||
/// Process an attribute which indicates that this function is an operator
|
||||
template <> struct process_attribute<is_operator> : process_attribute_default<is_operator> {
|
||||
static void init(const is_operator &, function_record *r) { r->is_operator = true; }
|
||||
};
|
||||
|
||||
template <> struct process_attribute<is_new_style_constructor> : process_attribute_default<is_new_style_constructor> {
|
||||
static void init(const is_new_style_constructor &, function_record *r) { r->is_new_style_constructor = true; }
|
||||
};
|
||||
|
||||
/// Process a keyword argument attribute (*without* a default value)
|
||||
template <> struct process_attribute<arg> : process_attribute_default<arg> {
|
||||
static void init(const arg &a, function_record *r) {
|
||||
if (r->is_method && r->args.empty())
|
||||
r->args.emplace_back("self", nullptr, handle(), true /*convert*/, false /*none not allowed*/);
|
||||
r->args.emplace_back(a.name, nullptr, handle(), !a.flag_noconvert, a.flag_none);
|
||||
}
|
||||
};
|
||||
|
||||
/// Process a keyword argument attribute (*with* a default value)
|
||||
template <> struct process_attribute<arg_v> : process_attribute_default<arg_v> {
|
||||
static void init(const arg_v &a, function_record *r) {
|
||||
if (r->is_method && r->args.empty())
|
||||
r->args.emplace_back("self", nullptr /*descr*/, handle() /*parent*/, true /*convert*/, false /*none not allowed*/);
|
||||
|
||||
if (!a.value) {
|
||||
#if !defined(NDEBUG)
|
||||
std::string descr("'");
|
||||
if (a.name) descr += std::string(a.name) + ": ";
|
||||
descr += a.type + "'";
|
||||
if (r->is_method) {
|
||||
if (r->name)
|
||||
descr += " in method '" + (std::string) str(r->scope) + "." + (std::string) r->name + "'";
|
||||
else
|
||||
descr += " in method of '" + (std::string) str(r->scope) + "'";
|
||||
} else if (r->name) {
|
||||
descr += " in function '" + (std::string) r->name + "'";
|
||||
}
|
||||
pybind11_fail("arg(): could not convert default argument "
|
||||
+ descr + " into a Python object (type not registered yet?)");
|
||||
#else
|
||||
pybind11_fail("arg(): could not convert default argument "
|
||||
"into a Python object (type not registered yet?). "
|
||||
"Compile in debug mode for more information.");
|
||||
#endif
|
||||
}
|
||||
r->args.emplace_back(a.name, a.descr, a.value.inc_ref(), !a.flag_noconvert, a.flag_none);
|
||||
}
|
||||
};
|
||||
|
||||
/// Process a parent class attribute. Single inheritance only (class_ itself already guarantees that)
|
||||
template <typename T>
|
||||
struct process_attribute<T, enable_if_t<is_pyobject<T>::value>> : process_attribute_default<handle> {
|
||||
static void init(const handle &h, type_record *r) { r->bases.append(h); }
|
||||
};
|
||||
|
||||
/// Process a parent class attribute (deprecated, does not support multiple inheritance)
|
||||
template <typename T>
|
||||
struct process_attribute<base<T>> : process_attribute_default<base<T>> {
|
||||
static void init(const base<T> &, type_record *r) { r->add_base(typeid(T), nullptr); }
|
||||
};
|
||||
|
||||
/// Process a multiple inheritance attribute
|
||||
template <>
|
||||
struct process_attribute<multiple_inheritance> : process_attribute_default<multiple_inheritance> {
|
||||
static void init(const multiple_inheritance &, type_record *r) { r->multiple_inheritance = true; }
|
||||
};
|
||||
|
||||
template <>
|
||||
struct process_attribute<dynamic_attr> : process_attribute_default<dynamic_attr> {
|
||||
static void init(const dynamic_attr &, type_record *r) { r->dynamic_attr = true; }
|
||||
};
|
||||
|
||||
template <>
|
||||
struct process_attribute<buffer_protocol> : process_attribute_default<buffer_protocol> {
|
||||
static void init(const buffer_protocol &, type_record *r) { r->buffer_protocol = true; }
|
||||
};
|
||||
|
||||
template <>
|
||||
struct process_attribute<metaclass> : process_attribute_default<metaclass> {
|
||||
static void init(const metaclass &m, type_record *r) { r->metaclass = m.value; }
|
||||
};
|
||||
|
||||
template <>
|
||||
struct process_attribute<module_local> : process_attribute_default<module_local> {
|
||||
static void init(const module_local &l, type_record *r) { r->module_local = l.value; }
|
||||
};
|
||||
|
||||
/// Process an 'arithmetic' attribute for enums (does nothing here)
|
||||
template <>
|
||||
struct process_attribute<arithmetic> : process_attribute_default<arithmetic> {};
|
||||
|
||||
template <typename... Ts>
|
||||
struct process_attribute<call_guard<Ts...>> : process_attribute_default<call_guard<Ts...>> { };
|
||||
|
||||
/**
|
||||
* Process a keep_alive call policy -- invokes keep_alive_impl during the
|
||||
* pre-call handler if both Nurse, Patient != 0 and use the post-call handler
|
||||
* otherwise
|
||||
*/
|
||||
template <size_t Nurse, size_t Patient> struct process_attribute<keep_alive<Nurse, Patient>> : public process_attribute_default<keep_alive<Nurse, Patient>> {
|
||||
template <size_t N = Nurse, size_t P = Patient, enable_if_t<N != 0 && P != 0, int> = 0>
|
||||
static void precall(function_call &call) { keep_alive_impl(Nurse, Patient, call, handle()); }
|
||||
template <size_t N = Nurse, size_t P = Patient, enable_if_t<N != 0 && P != 0, int> = 0>
|
||||
static void postcall(function_call &, handle) { }
|
||||
template <size_t N = Nurse, size_t P = Patient, enable_if_t<N == 0 || P == 0, int> = 0>
|
||||
static void precall(function_call &) { }
|
||||
template <size_t N = Nurse, size_t P = Patient, enable_if_t<N == 0 || P == 0, int> = 0>
|
||||
static void postcall(function_call &call, handle ret) { keep_alive_impl(Nurse, Patient, call, ret); }
|
||||
};
|
||||
|
||||
/// Recursively iterate over variadic template arguments
|
||||
template <typename... Args> struct process_attributes {
|
||||
static void init(const Args&... args, function_record *r) {
|
||||
int unused[] = { 0, (process_attribute<typename std::decay<Args>::type>::init(args, r), 0) ... };
|
||||
ignore_unused(unused);
|
||||
}
|
||||
static void init(const Args&... args, type_record *r) {
|
||||
int unused[] = { 0, (process_attribute<typename std::decay<Args>::type>::init(args, r), 0) ... };
|
||||
ignore_unused(unused);
|
||||
}
|
||||
static void precall(function_call &call) {
|
||||
int unused[] = { 0, (process_attribute<typename std::decay<Args>::type>::precall(call), 0) ... };
|
||||
ignore_unused(unused);
|
||||
}
|
||||
static void postcall(function_call &call, handle fn_ret) {
|
||||
int unused[] = { 0, (process_attribute<typename std::decay<Args>::type>::postcall(call, fn_ret), 0) ... };
|
||||
ignore_unused(unused);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
using is_call_guard = is_instantiation<call_guard, T>;
|
||||
|
||||
/// Extract the ``type`` from the first `call_guard` in `Extras...` (or `void_type` if none found)
|
||||
template <typename... Extra>
|
||||
using extract_guard_t = typename exactly_one_t<is_call_guard, call_guard<>, Extra...>::type;
|
||||
|
||||
/// Check the number of named arguments at compile time
|
||||
template <typename... Extra,
|
||||
size_t named = constexpr_sum(std::is_base_of<arg, Extra>::value...),
|
||||
size_t self = constexpr_sum(std::is_same<is_method, Extra>::value...)>
|
||||
constexpr bool expected_num_args(size_t nargs, bool has_args, bool has_kwargs) {
|
||||
return named == 0 || (self + named + has_args + has_kwargs) == nargs;
|
||||
}
|
||||
|
||||
NAMESPACE_END(detail)
|
||||
NAMESPACE_END(PYBIND11_NAMESPACE)
|
108
python/src/pybind11/buffer_info.h
Normal file
108
python/src/pybind11/buffer_info.h
Normal file
@@ -0,0 +1,108 @@
|
||||
/*
|
||||
pybind11/buffer_info.h: Python buffer object interface
|
||||
|
||||
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
|
||||
|
||||
All rights reserved. Use of this source code is governed by a
|
||||
BSD-style license that can be found in the LICENSE file.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "detail/common.h"
|
||||
|
||||
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
|
||||
|
||||
/// Information record describing a Python buffer object
|
||||
struct buffer_info {
|
||||
void *ptr = nullptr; // Pointer to the underlying storage
|
||||
ssize_t itemsize = 0; // Size of individual items in bytes
|
||||
ssize_t size = 0; // Total number of entries
|
||||
std::string format; // For homogeneous buffers, this should be set to format_descriptor<T>::format()
|
||||
ssize_t ndim = 0; // Number of dimensions
|
||||
std::vector<ssize_t> shape; // Shape of the tensor (1 entry per dimension)
|
||||
std::vector<ssize_t> strides; // Number of entries between adjacent entries (for each per dimension)
|
||||
|
||||
buffer_info() { }
|
||||
|
||||
buffer_info(void *ptr, ssize_t itemsize, const std::string &format, ssize_t ndim,
|
||||
detail::any_container<ssize_t> shape_in, detail::any_container<ssize_t> strides_in)
|
||||
: ptr(ptr), itemsize(itemsize), size(1), format(format), ndim(ndim),
|
||||
shape(std::move(shape_in)), strides(std::move(strides_in)) {
|
||||
if (ndim != (ssize_t) shape.size() || ndim != (ssize_t) strides.size())
|
||||
pybind11_fail("buffer_info: ndim doesn't match shape and/or strides length");
|
||||
for (size_t i = 0; i < (size_t) ndim; ++i)
|
||||
size *= shape[i];
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
buffer_info(T *ptr, detail::any_container<ssize_t> shape_in, detail::any_container<ssize_t> strides_in)
|
||||
: buffer_info(private_ctr_tag(), ptr, sizeof(T), format_descriptor<T>::format(), static_cast<ssize_t>(shape_in->size()), std::move(shape_in), std::move(strides_in)) { }
|
||||
|
||||
buffer_info(void *ptr, ssize_t itemsize, const std::string &format, ssize_t size)
|
||||
: buffer_info(ptr, itemsize, format, 1, {size}, {itemsize}) { }
|
||||
|
||||
template <typename T>
|
||||
buffer_info(T *ptr, ssize_t size)
|
||||
: buffer_info(ptr, sizeof(T), format_descriptor<T>::format(), size) { }
|
||||
|
||||
explicit buffer_info(Py_buffer *view, bool ownview = true)
|
||||
: buffer_info(view->buf, view->itemsize, view->format, view->ndim,
|
||||
{view->shape, view->shape + view->ndim}, {view->strides, view->strides + view->ndim}) {
|
||||
this->view = view;
|
||||
this->ownview = ownview;
|
||||
}
|
||||
|
||||
buffer_info(const buffer_info &) = delete;
|
||||
buffer_info& operator=(const buffer_info &) = delete;
|
||||
|
||||
buffer_info(buffer_info &&other) {
|
||||
(*this) = std::move(other);
|
||||
}
|
||||
|
||||
buffer_info& operator=(buffer_info &&rhs) {
|
||||
ptr = rhs.ptr;
|
||||
itemsize = rhs.itemsize;
|
||||
size = rhs.size;
|
||||
format = std::move(rhs.format);
|
||||
ndim = rhs.ndim;
|
||||
shape = std::move(rhs.shape);
|
||||
strides = std::move(rhs.strides);
|
||||
std::swap(view, rhs.view);
|
||||
std::swap(ownview, rhs.ownview);
|
||||
return *this;
|
||||
}
|
||||
|
||||
~buffer_info() {
|
||||
if (view && ownview) { PyBuffer_Release(view); delete view; }
|
||||
}
|
||||
|
||||
private:
|
||||
struct private_ctr_tag { };
|
||||
|
||||
buffer_info(private_ctr_tag, void *ptr, ssize_t itemsize, const std::string &format, ssize_t ndim,
|
||||
detail::any_container<ssize_t> &&shape_in, detail::any_container<ssize_t> &&strides_in)
|
||||
: buffer_info(ptr, itemsize, format, ndim, std::move(shape_in), std::move(strides_in)) { }
|
||||
|
||||
Py_buffer *view = nullptr;
|
||||
bool ownview = false;
|
||||
};
|
||||
|
||||
NAMESPACE_BEGIN(detail)
|
||||
|
||||
template <typename T, typename SFINAE = void> struct compare_buffer_info {
|
||||
static bool compare(const buffer_info& b) {
|
||||
return b.format == format_descriptor<T>::format() && b.itemsize == (ssize_t) sizeof(T);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T> struct compare_buffer_info<T, detail::enable_if_t<std::is_integral<T>::value>> {
|
||||
static bool compare(const buffer_info& b) {
|
||||
return (size_t) b.itemsize == sizeof(T) && (b.format == format_descriptor<T>::value ||
|
||||
((sizeof(T) == sizeof(long)) && b.format == (std::is_unsigned<T>::value ? "L" : "l")) ||
|
||||
((sizeof(T) == sizeof(size_t)) && b.format == (std::is_unsigned<T>::value ? "N" : "n")));
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(detail)
|
||||
NAMESPACE_END(PYBIND11_NAMESPACE)
|
2128
python/src/pybind11/cast.h
Normal file
2128
python/src/pybind11/cast.h
Normal file
File diff suppressed because it is too large
Load Diff
162
python/src/pybind11/chrono.h
Normal file
162
python/src/pybind11/chrono.h
Normal file
@@ -0,0 +1,162 @@
|
||||
/*
|
||||
pybind11/chrono.h: Transparent conversion between std::chrono and python's datetime
|
||||
|
||||
Copyright (c) 2016 Trent Houliston <trent@houliston.me> and
|
||||
Wenzel Jakob <wenzel.jakob@epfl.ch>
|
||||
|
||||
All rights reserved. Use of this source code is governed by a
|
||||
BSD-style license that can be found in the LICENSE file.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "pybind11.h"
|
||||
#include <cmath>
|
||||
#include <ctime>
|
||||
#include <chrono>
|
||||
#include <datetime.h>
|
||||
|
||||
// Backport the PyDateTime_DELTA functions from Python3.3 if required
|
||||
#ifndef PyDateTime_DELTA_GET_DAYS
|
||||
#define PyDateTime_DELTA_GET_DAYS(o) (((PyDateTime_Delta*)o)->days)
|
||||
#endif
|
||||
#ifndef PyDateTime_DELTA_GET_SECONDS
|
||||
#define PyDateTime_DELTA_GET_SECONDS(o) (((PyDateTime_Delta*)o)->seconds)
|
||||
#endif
|
||||
#ifndef PyDateTime_DELTA_GET_MICROSECONDS
|
||||
#define PyDateTime_DELTA_GET_MICROSECONDS(o) (((PyDateTime_Delta*)o)->microseconds)
|
||||
#endif
|
||||
|
||||
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
|
||||
NAMESPACE_BEGIN(detail)
|
||||
|
||||
template <typename type> class duration_caster {
|
||||
public:
|
||||
typedef typename type::rep rep;
|
||||
typedef typename type::period period;
|
||||
|
||||
typedef std::chrono::duration<uint_fast32_t, std::ratio<86400>> days;
|
||||
|
||||
bool load(handle src, bool) {
|
||||
using namespace std::chrono;
|
||||
|
||||
// Lazy initialise the PyDateTime import
|
||||
if (!PyDateTimeAPI) { PyDateTime_IMPORT; }
|
||||
|
||||
if (!src) return false;
|
||||
// If invoked with datetime.delta object
|
||||
if (PyDelta_Check(src.ptr())) {
|
||||
value = type(duration_cast<duration<rep, period>>(
|
||||
days(PyDateTime_DELTA_GET_DAYS(src.ptr()))
|
||||
+ seconds(PyDateTime_DELTA_GET_SECONDS(src.ptr()))
|
||||
+ microseconds(PyDateTime_DELTA_GET_MICROSECONDS(src.ptr()))));
|
||||
return true;
|
||||
}
|
||||
// If invoked with a float we assume it is seconds and convert
|
||||
else if (PyFloat_Check(src.ptr())) {
|
||||
value = type(duration_cast<duration<rep, period>>(duration<double>(PyFloat_AsDouble(src.ptr()))));
|
||||
return true;
|
||||
}
|
||||
else return false;
|
||||
}
|
||||
|
||||
// If this is a duration just return it back
|
||||
static const std::chrono::duration<rep, period>& get_duration(const std::chrono::duration<rep, period> &src) {
|
||||
return src;
|
||||
}
|
||||
|
||||
// If this is a time_point get the time_since_epoch
|
||||
template <typename Clock> static std::chrono::duration<rep, period> get_duration(const std::chrono::time_point<Clock, std::chrono::duration<rep, period>> &src) {
|
||||
return src.time_since_epoch();
|
||||
}
|
||||
|
||||
static handle cast(const type &src, return_value_policy /* policy */, handle /* parent */) {
|
||||
using namespace std::chrono;
|
||||
|
||||
// Use overloaded function to get our duration from our source
|
||||
// Works out if it is a duration or time_point and get the duration
|
||||
auto d = get_duration(src);
|
||||
|
||||
// Lazy initialise the PyDateTime import
|
||||
if (!PyDateTimeAPI) { PyDateTime_IMPORT; }
|
||||
|
||||
// Declare these special duration types so the conversions happen with the correct primitive types (int)
|
||||
using dd_t = duration<int, std::ratio<86400>>;
|
||||
using ss_t = duration<int, std::ratio<1>>;
|
||||
using us_t = duration<int, std::micro>;
|
||||
|
||||
auto dd = duration_cast<dd_t>(d);
|
||||
auto subd = d - dd;
|
||||
auto ss = duration_cast<ss_t>(subd);
|
||||
auto us = duration_cast<us_t>(subd - ss);
|
||||
return PyDelta_FromDSU(dd.count(), ss.count(), us.count());
|
||||
}
|
||||
|
||||
PYBIND11_TYPE_CASTER(type, _("datetime.timedelta"));
|
||||
};
|
||||
|
||||
// This is for casting times on the system clock into datetime.datetime instances
|
||||
template <typename Duration> class type_caster<std::chrono::time_point<std::chrono::system_clock, Duration>> {
|
||||
public:
|
||||
typedef std::chrono::time_point<std::chrono::system_clock, Duration> type;
|
||||
bool load(handle src, bool) {
|
||||
using namespace std::chrono;
|
||||
|
||||
// Lazy initialise the PyDateTime import
|
||||
if (!PyDateTimeAPI) { PyDateTime_IMPORT; }
|
||||
|
||||
if (!src) return false;
|
||||
if (PyDateTime_Check(src.ptr())) {
|
||||
std::tm cal;
|
||||
cal.tm_sec = PyDateTime_DATE_GET_SECOND(src.ptr());
|
||||
cal.tm_min = PyDateTime_DATE_GET_MINUTE(src.ptr());
|
||||
cal.tm_hour = PyDateTime_DATE_GET_HOUR(src.ptr());
|
||||
cal.tm_mday = PyDateTime_GET_DAY(src.ptr());
|
||||
cal.tm_mon = PyDateTime_GET_MONTH(src.ptr()) - 1;
|
||||
cal.tm_year = PyDateTime_GET_YEAR(src.ptr()) - 1900;
|
||||
cal.tm_isdst = -1;
|
||||
|
||||
value = system_clock::from_time_t(std::mktime(&cal)) + microseconds(PyDateTime_DATE_GET_MICROSECOND(src.ptr()));
|
||||
return true;
|
||||
}
|
||||
else return false;
|
||||
}
|
||||
|
||||
static handle cast(const std::chrono::time_point<std::chrono::system_clock, Duration> &src, return_value_policy /* policy */, handle /* parent */) {
|
||||
using namespace std::chrono;
|
||||
|
||||
// Lazy initialise the PyDateTime import
|
||||
if (!PyDateTimeAPI) { PyDateTime_IMPORT; }
|
||||
|
||||
std::time_t tt = system_clock::to_time_t(src);
|
||||
// this function uses static memory so it's best to copy it out asap just in case
|
||||
// otherwise other code that is using localtime may break this (not just python code)
|
||||
std::tm localtime = *std::localtime(&tt);
|
||||
|
||||
// Declare these special duration types so the conversions happen with the correct primitive types (int)
|
||||
using us_t = duration<int, std::micro>;
|
||||
|
||||
return PyDateTime_FromDateAndTime(localtime.tm_year + 1900,
|
||||
localtime.tm_mon + 1,
|
||||
localtime.tm_mday,
|
||||
localtime.tm_hour,
|
||||
localtime.tm_min,
|
||||
localtime.tm_sec,
|
||||
(duration_cast<us_t>(src.time_since_epoch() % seconds(1))).count());
|
||||
}
|
||||
PYBIND11_TYPE_CASTER(type, _("datetime.datetime"));
|
||||
};
|
||||
|
||||
// Other clocks that are not the system clock are not measured as datetime.datetime objects
|
||||
// since they are not measured on calendar time. So instead we just make them timedeltas
|
||||
// Or if they have passed us a time as a float we convert that
|
||||
template <typename Clock, typename Duration> class type_caster<std::chrono::time_point<Clock, Duration>>
|
||||
: public duration_caster<std::chrono::time_point<Clock, Duration>> {
|
||||
};
|
||||
|
||||
template <typename Rep, typename Period> class type_caster<std::chrono::duration<Rep, Period>>
|
||||
: public duration_caster<std::chrono::duration<Rep, Period>> {
|
||||
};
|
||||
|
||||
NAMESPACE_END(detail)
|
||||
NAMESPACE_END(PYBIND11_NAMESPACE)
|
2
python/src/pybind11/common.h
Normal file
2
python/src/pybind11/common.h
Normal file
@@ -0,0 +1,2 @@
|
||||
#include "detail/common.h"
|
||||
#warning "Including 'common.h' is deprecated. It will be removed in v3.0. Use 'pybind11.h'."
|
65
python/src/pybind11/complex.h
Normal file
65
python/src/pybind11/complex.h
Normal file
@@ -0,0 +1,65 @@
|
||||
/*
|
||||
pybind11/complex.h: Complex number support
|
||||
|
||||
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
|
||||
|
||||
All rights reserved. Use of this source code is governed by a
|
||||
BSD-style license that can be found in the LICENSE file.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "pybind11.h"
|
||||
#include <complex>
|
||||
|
||||
/// glibc defines I as a macro which breaks things, e.g., boost template names
|
||||
#ifdef I
|
||||
# undef I
|
||||
#endif
|
||||
|
||||
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
|
||||
|
||||
template <typename T> struct format_descriptor<std::complex<T>, detail::enable_if_t<std::is_floating_point<T>::value>> {
|
||||
static constexpr const char c = format_descriptor<T>::c;
|
||||
static constexpr const char value[3] = { 'Z', c, '\0' };
|
||||
static std::string format() { return std::string(value); }
|
||||
};
|
||||
|
||||
#ifndef PYBIND11_CPP17
|
||||
|
||||
template <typename T> constexpr const char format_descriptor<
|
||||
std::complex<T>, detail::enable_if_t<std::is_floating_point<T>::value>>::value[3];
|
||||
|
||||
#endif
|
||||
|
||||
NAMESPACE_BEGIN(detail)
|
||||
|
||||
template <typename T> struct is_fmt_numeric<std::complex<T>, detail::enable_if_t<std::is_floating_point<T>::value>> {
|
||||
static constexpr bool value = true;
|
||||
static constexpr int index = is_fmt_numeric<T>::index + 3;
|
||||
};
|
||||
|
||||
template <typename T> class type_caster<std::complex<T>> {
|
||||
public:
|
||||
bool load(handle src, bool convert) {
|
||||
if (!src)
|
||||
return false;
|
||||
if (!convert && !PyComplex_Check(src.ptr()))
|
||||
return false;
|
||||
Py_complex result = PyComplex_AsCComplex(src.ptr());
|
||||
if (result.real == -1.0 && PyErr_Occurred()) {
|
||||
PyErr_Clear();
|
||||
return false;
|
||||
}
|
||||
value = std::complex<T>((T) result.real, (T) result.imag);
|
||||
return true;
|
||||
}
|
||||
|
||||
static handle cast(const std::complex<T> &src, return_value_policy /* policy */, handle /* parent */) {
|
||||
return PyComplex_FromDoubles((double) src.real(), (double) src.imag());
|
||||
}
|
||||
|
||||
PYBIND11_TYPE_CASTER(std::complex<T>, _("complex"));
|
||||
};
|
||||
NAMESPACE_END(detail)
|
||||
NAMESPACE_END(PYBIND11_NAMESPACE)
|
623
python/src/pybind11/detail/class.h
Normal file
623
python/src/pybind11/detail/class.h
Normal file
@@ -0,0 +1,623 @@
|
||||
/*
|
||||
pybind11/detail/class.h: Python C API implementation details for py::class_
|
||||
|
||||
Copyright (c) 2017 Wenzel Jakob <wenzel.jakob@epfl.ch>
|
||||
|
||||
All rights reserved. Use of this source code is governed by a
|
||||
BSD-style license that can be found in the LICENSE file.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "../attr.h"
|
||||
#include "../options.h"
|
||||
|
||||
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
|
||||
NAMESPACE_BEGIN(detail)
|
||||
|
||||
#if PY_VERSION_HEX >= 0x03030000
|
||||
# define PYBIND11_BUILTIN_QUALNAME
|
||||
# define PYBIND11_SET_OLDPY_QUALNAME(obj, nameobj)
|
||||
#else
|
||||
// In pre-3.3 Python, we still set __qualname__ so that we can produce reliable function type
|
||||
// signatures; in 3.3+ this macro expands to nothing:
|
||||
# define PYBIND11_SET_OLDPY_QUALNAME(obj, nameobj) setattr((PyObject *) obj, "__qualname__", nameobj)
|
||||
#endif
|
||||
|
||||
inline PyTypeObject *type_incref(PyTypeObject *type) {
|
||||
Py_INCREF(type);
|
||||
return type;
|
||||
}
|
||||
|
||||
#if !defined(PYPY_VERSION)
|
||||
|
||||
/// `pybind11_static_property.__get__()`: Always pass the class instead of the instance.
|
||||
extern "C" inline PyObject *pybind11_static_get(PyObject *self, PyObject * /*ob*/, PyObject *cls) {
|
||||
return PyProperty_Type.tp_descr_get(self, cls, cls);
|
||||
}
|
||||
|
||||
/// `pybind11_static_property.__set__()`: Just like the above `__get__()`.
|
||||
extern "C" inline int pybind11_static_set(PyObject *self, PyObject *obj, PyObject *value) {
|
||||
PyObject *cls = PyType_Check(obj) ? obj : (PyObject *) Py_TYPE(obj);
|
||||
return PyProperty_Type.tp_descr_set(self, cls, value);
|
||||
}
|
||||
|
||||
/** A `static_property` is the same as a `property` but the `__get__()` and `__set__()`
|
||||
methods are modified to always use the object type instead of a concrete instance.
|
||||
Return value: New reference. */
|
||||
inline PyTypeObject *make_static_property_type() {
|
||||
constexpr auto *name = "pybind11_static_property";
|
||||
auto name_obj = reinterpret_steal<object>(PYBIND11_FROM_STRING(name));
|
||||
|
||||
/* Danger zone: from now (and until PyType_Ready), make sure to
|
||||
issue no Python C API calls which could potentially invoke the
|
||||
garbage collector (the GC will call type_traverse(), which will in
|
||||
turn find the newly constructed type in an invalid state) */
|
||||
auto heap_type = (PyHeapTypeObject *) PyType_Type.tp_alloc(&PyType_Type, 0);
|
||||
if (!heap_type)
|
||||
pybind11_fail("make_static_property_type(): error allocating type!");
|
||||
|
||||
heap_type->ht_name = name_obj.inc_ref().ptr();
|
||||
#ifdef PYBIND11_BUILTIN_QUALNAME
|
||||
heap_type->ht_qualname = name_obj.inc_ref().ptr();
|
||||
#endif
|
||||
|
||||
auto type = &heap_type->ht_type;
|
||||
type->tp_name = name;
|
||||
type->tp_base = type_incref(&PyProperty_Type);
|
||||
type->tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
|
||||
type->tp_descr_get = pybind11_static_get;
|
||||
type->tp_descr_set = pybind11_static_set;
|
||||
|
||||
if (PyType_Ready(type) < 0)
|
||||
pybind11_fail("make_static_property_type(): failure in PyType_Ready()!");
|
||||
|
||||
setattr((PyObject *) type, "__module__", str("pybind11_builtins"));
|
||||
PYBIND11_SET_OLDPY_QUALNAME(type, name_obj);
|
||||
|
||||
return type;
|
||||
}
|
||||
|
||||
#else // PYPY
|
||||
|
||||
/** PyPy has some issues with the above C API, so we evaluate Python code instead.
|
||||
This function will only be called once so performance isn't really a concern.
|
||||
Return value: New reference. */
|
||||
inline PyTypeObject *make_static_property_type() {
|
||||
auto d = dict();
|
||||
PyObject *result = PyRun_String(R"(\
|
||||
class pybind11_static_property(property):
|
||||
def __get__(self, obj, cls):
|
||||
return property.__get__(self, cls, cls)
|
||||
|
||||
def __set__(self, obj, value):
|
||||
cls = obj if isinstance(obj, type) else type(obj)
|
||||
property.__set__(self, cls, value)
|
||||
)", Py_file_input, d.ptr(), d.ptr()
|
||||
);
|
||||
if (result == nullptr)
|
||||
throw error_already_set();
|
||||
Py_DECREF(result);
|
||||
return (PyTypeObject *) d["pybind11_static_property"].cast<object>().release().ptr();
|
||||
}
|
||||
|
||||
#endif // PYPY
|
||||
|
||||
/** Types with static properties need to handle `Type.static_prop = x` in a specific way.
|
||||
By default, Python replaces the `static_property` itself, but for wrapped C++ types
|
||||
we need to call `static_property.__set__()` in order to propagate the new value to
|
||||
the underlying C++ data structure. */
|
||||
extern "C" inline int pybind11_meta_setattro(PyObject* obj, PyObject* name, PyObject* value) {
|
||||
// Use `_PyType_Lookup()` instead of `PyObject_GetAttr()` in order to get the raw
|
||||
// descriptor (`property`) instead of calling `tp_descr_get` (`property.__get__()`).
|
||||
PyObject *descr = _PyType_Lookup((PyTypeObject *) obj, name);
|
||||
|
||||
// The following assignment combinations are possible:
|
||||
// 1. `Type.static_prop = value` --> descr_set: `Type.static_prop.__set__(value)`
|
||||
// 2. `Type.static_prop = other_static_prop` --> setattro: replace existing `static_prop`
|
||||
// 3. `Type.regular_attribute = value` --> setattro: regular attribute assignment
|
||||
const auto static_prop = (PyObject *) get_internals().static_property_type;
|
||||
const auto call_descr_set = descr && PyObject_IsInstance(descr, static_prop)
|
||||
&& !PyObject_IsInstance(value, static_prop);
|
||||
if (call_descr_set) {
|
||||
// Call `static_property.__set__()` instead of replacing the `static_property`.
|
||||
#if !defined(PYPY_VERSION)
|
||||
return Py_TYPE(descr)->tp_descr_set(descr, obj, value);
|
||||
#else
|
||||
if (PyObject *result = PyObject_CallMethod(descr, "__set__", "OO", obj, value)) {
|
||||
Py_DECREF(result);
|
||||
return 0;
|
||||
} else {
|
||||
return -1;
|
||||
}
|
||||
#endif
|
||||
} else {
|
||||
// Replace existing attribute.
|
||||
return PyType_Type.tp_setattro(obj, name, value);
|
||||
}
|
||||
}
|
||||
|
||||
#if PY_MAJOR_VERSION >= 3
|
||||
/**
|
||||
* Python 3's PyInstanceMethod_Type hides itself via its tp_descr_get, which prevents aliasing
|
||||
* methods via cls.attr("m2") = cls.attr("m1"): instead the tp_descr_get returns a plain function,
|
||||
* when called on a class, or a PyMethod, when called on an instance. Override that behaviour here
|
||||
* to do a special case bypass for PyInstanceMethod_Types.
|
||||
*/
|
||||
extern "C" inline PyObject *pybind11_meta_getattro(PyObject *obj, PyObject *name) {
|
||||
PyObject *descr = _PyType_Lookup((PyTypeObject *) obj, name);
|
||||
if (descr && PyInstanceMethod_Check(descr)) {
|
||||
Py_INCREF(descr);
|
||||
return descr;
|
||||
}
|
||||
else {
|
||||
return PyType_Type.tp_getattro(obj, name);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/** This metaclass is assigned by default to all pybind11 types and is required in order
|
||||
for static properties to function correctly. Users may override this using `py::metaclass`.
|
||||
Return value: New reference. */
|
||||
inline PyTypeObject* make_default_metaclass() {
|
||||
constexpr auto *name = "pybind11_type";
|
||||
auto name_obj = reinterpret_steal<object>(PYBIND11_FROM_STRING(name));
|
||||
|
||||
/* Danger zone: from now (and until PyType_Ready), make sure to
|
||||
issue no Python C API calls which could potentially invoke the
|
||||
garbage collector (the GC will call type_traverse(), which will in
|
||||
turn find the newly constructed type in an invalid state) */
|
||||
auto heap_type = (PyHeapTypeObject *) PyType_Type.tp_alloc(&PyType_Type, 0);
|
||||
if (!heap_type)
|
||||
pybind11_fail("make_default_metaclass(): error allocating metaclass!");
|
||||
|
||||
heap_type->ht_name = name_obj.inc_ref().ptr();
|
||||
#ifdef PYBIND11_BUILTIN_QUALNAME
|
||||
heap_type->ht_qualname = name_obj.inc_ref().ptr();
|
||||
#endif
|
||||
|
||||
auto type = &heap_type->ht_type;
|
||||
type->tp_name = name;
|
||||
type->tp_base = type_incref(&PyType_Type);
|
||||
type->tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
|
||||
|
||||
type->tp_setattro = pybind11_meta_setattro;
|
||||
#if PY_MAJOR_VERSION >= 3
|
||||
type->tp_getattro = pybind11_meta_getattro;
|
||||
#endif
|
||||
|
||||
if (PyType_Ready(type) < 0)
|
||||
pybind11_fail("make_default_metaclass(): failure in PyType_Ready()!");
|
||||
|
||||
setattr((PyObject *) type, "__module__", str("pybind11_builtins"));
|
||||
PYBIND11_SET_OLDPY_QUALNAME(type, name_obj);
|
||||
|
||||
return type;
|
||||
}
|
||||
|
||||
/// For multiple inheritance types we need to recursively register/deregister base pointers for any
|
||||
/// base classes with pointers that are difference from the instance value pointer so that we can
|
||||
/// correctly recognize an offset base class pointer. This calls a function with any offset base ptrs.
|
||||
inline void traverse_offset_bases(void *valueptr, const detail::type_info *tinfo, instance *self,
|
||||
bool (*f)(void * /*parentptr*/, instance * /*self*/)) {
|
||||
for (handle h : reinterpret_borrow<tuple>(tinfo->type->tp_bases)) {
|
||||
if (auto parent_tinfo = get_type_info((PyTypeObject *) h.ptr())) {
|
||||
for (auto &c : parent_tinfo->implicit_casts) {
|
||||
if (c.first == tinfo->cpptype) {
|
||||
auto *parentptr = c.second(valueptr);
|
||||
if (parentptr != valueptr)
|
||||
f(parentptr, self);
|
||||
traverse_offset_bases(parentptr, parent_tinfo, self, f);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
inline bool register_instance_impl(void *ptr, instance *self) {
|
||||
get_internals().registered_instances.emplace(ptr, self);
|
||||
return true; // unused, but gives the same signature as the deregister func
|
||||
}
|
||||
inline bool deregister_instance_impl(void *ptr, instance *self) {
|
||||
auto ®istered_instances = get_internals().registered_instances;
|
||||
auto range = registered_instances.equal_range(ptr);
|
||||
for (auto it = range.first; it != range.second; ++it) {
|
||||
if (Py_TYPE(self) == Py_TYPE(it->second)) {
|
||||
registered_instances.erase(it);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
inline void register_instance(instance *self, void *valptr, const type_info *tinfo) {
|
||||
register_instance_impl(valptr, self);
|
||||
if (!tinfo->simple_ancestors)
|
||||
traverse_offset_bases(valptr, tinfo, self, register_instance_impl);
|
||||
}
|
||||
|
||||
inline bool deregister_instance(instance *self, void *valptr, const type_info *tinfo) {
|
||||
bool ret = deregister_instance_impl(valptr, self);
|
||||
if (!tinfo->simple_ancestors)
|
||||
traverse_offset_bases(valptr, tinfo, self, deregister_instance_impl);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/// Instance creation function for all pybind11 types. It allocates the internal instance layout for
|
||||
/// holding C++ objects and holders. Allocation is done lazily (the first time the instance is cast
|
||||
/// to a reference or pointer), and initialization is done by an `__init__` function.
|
||||
inline PyObject *make_new_instance(PyTypeObject *type) {
|
||||
#if defined(PYPY_VERSION)
|
||||
// PyPy gets tp_basicsize wrong (issue 2482) under multiple inheritance when the first inherited
|
||||
// object is a a plain Python type (i.e. not derived from an extension type). Fix it.
|
||||
ssize_t instance_size = static_cast<ssize_t>(sizeof(instance));
|
||||
if (type->tp_basicsize < instance_size) {
|
||||
type->tp_basicsize = instance_size;
|
||||
}
|
||||
#endif
|
||||
PyObject *self = type->tp_alloc(type, 0);
|
||||
auto inst = reinterpret_cast<instance *>(self);
|
||||
// Allocate the value/holder internals:
|
||||
inst->allocate_layout();
|
||||
|
||||
inst->owned = true;
|
||||
|
||||
return self;
|
||||
}
|
||||
|
||||
/// Instance creation function for all pybind11 types. It only allocates space for the
|
||||
/// C++ object, but doesn't call the constructor -- an `__init__` function must do that.
|
||||
extern "C" inline PyObject *pybind11_object_new(PyTypeObject *type, PyObject *, PyObject *) {
|
||||
return make_new_instance(type);
|
||||
}
|
||||
|
||||
/// An `__init__` function constructs the C++ object. Users should provide at least one
|
||||
/// of these using `py::init` or directly with `.def(__init__, ...)`. Otherwise, the
|
||||
/// following default function will be used which simply throws an exception.
|
||||
extern "C" inline int pybind11_object_init(PyObject *self, PyObject *, PyObject *) {
|
||||
PyTypeObject *type = Py_TYPE(self);
|
||||
std::string msg;
|
||||
#if defined(PYPY_VERSION)
|
||||
msg += handle((PyObject *) type).attr("__module__").cast<std::string>() + ".";
|
||||
#endif
|
||||
msg += type->tp_name;
|
||||
msg += ": No constructor defined!";
|
||||
PyErr_SetString(PyExc_TypeError, msg.c_str());
|
||||
return -1;
|
||||
}
|
||||
|
||||
inline void add_patient(PyObject *nurse, PyObject *patient) {
|
||||
auto &internals = get_internals();
|
||||
auto instance = reinterpret_cast<detail::instance *>(nurse);
|
||||
instance->has_patients = true;
|
||||
Py_INCREF(patient);
|
||||
internals.patients[nurse].push_back(patient);
|
||||
}
|
||||
|
||||
inline void clear_patients(PyObject *self) {
|
||||
auto instance = reinterpret_cast<detail::instance *>(self);
|
||||
auto &internals = get_internals();
|
||||
auto pos = internals.patients.find(self);
|
||||
assert(pos != internals.patients.end());
|
||||
// Clearing the patients can cause more Python code to run, which
|
||||
// can invalidate the iterator. Extract the vector of patients
|
||||
// from the unordered_map first.
|
||||
auto patients = std::move(pos->second);
|
||||
internals.patients.erase(pos);
|
||||
instance->has_patients = false;
|
||||
for (PyObject *&patient : patients)
|
||||
Py_CLEAR(patient);
|
||||
}
|
||||
|
||||
/// Clears all internal data from the instance and removes it from registered instances in
|
||||
/// preparation for deallocation.
|
||||
inline void clear_instance(PyObject *self) {
|
||||
auto instance = reinterpret_cast<detail::instance *>(self);
|
||||
|
||||
// Deallocate any values/holders, if present:
|
||||
for (auto &v_h : values_and_holders(instance)) {
|
||||
if (v_h) {
|
||||
|
||||
// We have to deregister before we call dealloc because, for virtual MI types, we still
|
||||
// need to be able to get the parent pointers.
|
||||
if (v_h.instance_registered() && !deregister_instance(instance, v_h.value_ptr(), v_h.type))
|
||||
pybind11_fail("pybind11_object_dealloc(): Tried to deallocate unregistered instance!");
|
||||
|
||||
if (instance->owned || v_h.holder_constructed())
|
||||
v_h.type->dealloc(v_h);
|
||||
}
|
||||
}
|
||||
// Deallocate the value/holder layout internals:
|
||||
instance->deallocate_layout();
|
||||
|
||||
if (instance->weakrefs)
|
||||
PyObject_ClearWeakRefs(self);
|
||||
|
||||
PyObject **dict_ptr = _PyObject_GetDictPtr(self);
|
||||
if (dict_ptr)
|
||||
Py_CLEAR(*dict_ptr);
|
||||
|
||||
if (instance->has_patients)
|
||||
clear_patients(self);
|
||||
}
|
||||
|
||||
/// Instance destructor function for all pybind11 types. It calls `type_info.dealloc`
|
||||
/// to destroy the C++ object itself, while the rest is Python bookkeeping.
|
||||
extern "C" inline void pybind11_object_dealloc(PyObject *self) {
|
||||
clear_instance(self);
|
||||
|
||||
auto type = Py_TYPE(self);
|
||||
type->tp_free(self);
|
||||
|
||||
// `type->tp_dealloc != pybind11_object_dealloc` means that we're being called
|
||||
// as part of a derived type's dealloc, in which case we're not allowed to decref
|
||||
// the type here. For cross-module compatibility, we shouldn't compare directly
|
||||
// with `pybind11_object_dealloc`, but with the common one stashed in internals.
|
||||
auto pybind11_object_type = (PyTypeObject *) get_internals().instance_base;
|
||||
if (type->tp_dealloc == pybind11_object_type->tp_dealloc)
|
||||
Py_DECREF(type);
|
||||
}
|
||||
|
||||
/** Create the type which can be used as a common base for all classes. This is
|
||||
needed in order to satisfy Python's requirements for multiple inheritance.
|
||||
Return value: New reference. */
|
||||
inline PyObject *make_object_base_type(PyTypeObject *metaclass) {
|
||||
constexpr auto *name = "pybind11_object";
|
||||
auto name_obj = reinterpret_steal<object>(PYBIND11_FROM_STRING(name));
|
||||
|
||||
/* Danger zone: from now (and until PyType_Ready), make sure to
|
||||
issue no Python C API calls which could potentially invoke the
|
||||
garbage collector (the GC will call type_traverse(), which will in
|
||||
turn find the newly constructed type in an invalid state) */
|
||||
auto heap_type = (PyHeapTypeObject *) metaclass->tp_alloc(metaclass, 0);
|
||||
if (!heap_type)
|
||||
pybind11_fail("make_object_base_type(): error allocating type!");
|
||||
|
||||
heap_type->ht_name = name_obj.inc_ref().ptr();
|
||||
#ifdef PYBIND11_BUILTIN_QUALNAME
|
||||
heap_type->ht_qualname = name_obj.inc_ref().ptr();
|
||||
#endif
|
||||
|
||||
auto type = &heap_type->ht_type;
|
||||
type->tp_name = name;
|
||||
type->tp_base = type_incref(&PyBaseObject_Type);
|
||||
type->tp_basicsize = static_cast<ssize_t>(sizeof(instance));
|
||||
type->tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
|
||||
|
||||
type->tp_new = pybind11_object_new;
|
||||
type->tp_init = pybind11_object_init;
|
||||
type->tp_dealloc = pybind11_object_dealloc;
|
||||
|
||||
/* Support weak references (needed for the keep_alive feature) */
|
||||
type->tp_weaklistoffset = offsetof(instance, weakrefs);
|
||||
|
||||
if (PyType_Ready(type) < 0)
|
||||
pybind11_fail("PyType_Ready failed in make_object_base_type():" + error_string());
|
||||
|
||||
setattr((PyObject *) type, "__module__", str("pybind11_builtins"));
|
||||
PYBIND11_SET_OLDPY_QUALNAME(type, name_obj);
|
||||
|
||||
assert(!PyType_HasFeature(type, Py_TPFLAGS_HAVE_GC));
|
||||
return (PyObject *) heap_type;
|
||||
}
|
||||
|
||||
/// dynamic_attr: Support for `d = instance.__dict__`.
|
||||
extern "C" inline PyObject *pybind11_get_dict(PyObject *self, void *) {
|
||||
PyObject *&dict = *_PyObject_GetDictPtr(self);
|
||||
if (!dict)
|
||||
dict = PyDict_New();
|
||||
Py_XINCREF(dict);
|
||||
return dict;
|
||||
}
|
||||
|
||||
/// dynamic_attr: Support for `instance.__dict__ = dict()`.
|
||||
extern "C" inline int pybind11_set_dict(PyObject *self, PyObject *new_dict, void *) {
|
||||
if (!PyDict_Check(new_dict)) {
|
||||
PyErr_Format(PyExc_TypeError, "__dict__ must be set to a dictionary, not a '%.200s'",
|
||||
Py_TYPE(new_dict)->tp_name);
|
||||
return -1;
|
||||
}
|
||||
PyObject *&dict = *_PyObject_GetDictPtr(self);
|
||||
Py_INCREF(new_dict);
|
||||
Py_CLEAR(dict);
|
||||
dict = new_dict;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// dynamic_attr: Allow the garbage collector to traverse the internal instance `__dict__`.
|
||||
extern "C" inline int pybind11_traverse(PyObject *self, visitproc visit, void *arg) {
|
||||
PyObject *&dict = *_PyObject_GetDictPtr(self);
|
||||
Py_VISIT(dict);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// dynamic_attr: Allow the GC to clear the dictionary.
|
||||
extern "C" inline int pybind11_clear(PyObject *self) {
|
||||
PyObject *&dict = *_PyObject_GetDictPtr(self);
|
||||
Py_CLEAR(dict);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// Give instances of this type a `__dict__` and opt into garbage collection.
|
||||
inline void enable_dynamic_attributes(PyHeapTypeObject *heap_type) {
|
||||
auto type = &heap_type->ht_type;
|
||||
#if defined(PYPY_VERSION)
|
||||
pybind11_fail(std::string(type->tp_name) + ": dynamic attributes are "
|
||||
"currently not supported in "
|
||||
"conjunction with PyPy!");
|
||||
#endif
|
||||
type->tp_flags |= Py_TPFLAGS_HAVE_GC;
|
||||
type->tp_dictoffset = type->tp_basicsize; // place dict at the end
|
||||
type->tp_basicsize += (ssize_t)sizeof(PyObject *); // and allocate enough space for it
|
||||
type->tp_traverse = pybind11_traverse;
|
||||
type->tp_clear = pybind11_clear;
|
||||
|
||||
static PyGetSetDef getset[] = {
|
||||
{const_cast<char*>("__dict__"), pybind11_get_dict, pybind11_set_dict, nullptr, nullptr},
|
||||
{nullptr, nullptr, nullptr, nullptr, nullptr}
|
||||
};
|
||||
type->tp_getset = getset;
|
||||
}
|
||||
|
||||
/// buffer_protocol: Fill in the view as specified by flags.
|
||||
extern "C" inline int pybind11_getbuffer(PyObject *obj, Py_buffer *view, int flags) {
|
||||
// Look for a `get_buffer` implementation in this type's info or any bases (following MRO).
|
||||
type_info *tinfo = nullptr;
|
||||
for (auto type : reinterpret_borrow<tuple>(Py_TYPE(obj)->tp_mro)) {
|
||||
tinfo = get_type_info((PyTypeObject *) type.ptr());
|
||||
if (tinfo && tinfo->get_buffer)
|
||||
break;
|
||||
}
|
||||
if (view == nullptr || !tinfo || !tinfo->get_buffer) {
|
||||
if (view)
|
||||
view->obj = nullptr;
|
||||
PyErr_SetString(PyExc_BufferError, "pybind11_getbuffer(): Internal error");
|
||||
return -1;
|
||||
}
|
||||
std::memset(view, 0, sizeof(Py_buffer));
|
||||
buffer_info *info = tinfo->get_buffer(obj, tinfo->get_buffer_data);
|
||||
view->obj = obj;
|
||||
view->ndim = 1;
|
||||
view->internal = info;
|
||||
view->buf = info->ptr;
|
||||
view->itemsize = info->itemsize;
|
||||
view->len = view->itemsize;
|
||||
for (auto s : info->shape)
|
||||
view->len *= s;
|
||||
if ((flags & PyBUF_FORMAT) == PyBUF_FORMAT)
|
||||
view->format = const_cast<char *>(info->format.c_str());
|
||||
if ((flags & PyBUF_STRIDES) == PyBUF_STRIDES) {
|
||||
view->ndim = (int) info->ndim;
|
||||
view->strides = &info->strides[0];
|
||||
view->shape = &info->shape[0];
|
||||
}
|
||||
Py_INCREF(view->obj);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// buffer_protocol: Release the resources of the buffer.
|
||||
extern "C" inline void pybind11_releasebuffer(PyObject *, Py_buffer *view) {
|
||||
delete (buffer_info *) view->internal;
|
||||
}
|
||||
|
||||
/// Give this type a buffer interface.
|
||||
inline void enable_buffer_protocol(PyHeapTypeObject *heap_type) {
|
||||
heap_type->ht_type.tp_as_buffer = &heap_type->as_buffer;
|
||||
#if PY_MAJOR_VERSION < 3
|
||||
heap_type->ht_type.tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER;
|
||||
#endif
|
||||
|
||||
heap_type->as_buffer.bf_getbuffer = pybind11_getbuffer;
|
||||
heap_type->as_buffer.bf_releasebuffer = pybind11_releasebuffer;
|
||||
}
|
||||
|
||||
/** Create a brand new Python type according to the `type_record` specification.
|
||||
Return value: New reference. */
|
||||
inline PyObject* make_new_python_type(const type_record &rec) {
|
||||
auto name = reinterpret_steal<object>(PYBIND11_FROM_STRING(rec.name));
|
||||
|
||||
auto qualname = name;
|
||||
if (rec.scope && !PyModule_Check(rec.scope.ptr()) && hasattr(rec.scope, "__qualname__")) {
|
||||
#if PY_MAJOR_VERSION >= 3
|
||||
qualname = reinterpret_steal<object>(
|
||||
PyUnicode_FromFormat("%U.%U", rec.scope.attr("__qualname__").ptr(), name.ptr()));
|
||||
#else
|
||||
qualname = str(rec.scope.attr("__qualname__").cast<std::string>() + "." + rec.name);
|
||||
#endif
|
||||
}
|
||||
|
||||
object module;
|
||||
if (rec.scope) {
|
||||
if (hasattr(rec.scope, "__module__"))
|
||||
module = rec.scope.attr("__module__");
|
||||
else if (hasattr(rec.scope, "__name__"))
|
||||
module = rec.scope.attr("__name__");
|
||||
}
|
||||
|
||||
auto full_name = c_str(
|
||||
#if !defined(PYPY_VERSION)
|
||||
module ? str(module).cast<std::string>() + "." + rec.name :
|
||||
#endif
|
||||
rec.name);
|
||||
|
||||
char *tp_doc = nullptr;
|
||||
if (rec.doc && options::show_user_defined_docstrings()) {
|
||||
/* Allocate memory for docstring (using PyObject_MALLOC, since
|
||||
Python will free this later on) */
|
||||
size_t size = strlen(rec.doc) + 1;
|
||||
tp_doc = (char *) PyObject_MALLOC(size);
|
||||
memcpy((void *) tp_doc, rec.doc, size);
|
||||
}
|
||||
|
||||
auto &internals = get_internals();
|
||||
auto bases = tuple(rec.bases);
|
||||
auto base = (bases.size() == 0) ? internals.instance_base
|
||||
: bases[0].ptr();
|
||||
|
||||
/* Danger zone: from now (and until PyType_Ready), make sure to
|
||||
issue no Python C API calls which could potentially invoke the
|
||||
garbage collector (the GC will call type_traverse(), which will in
|
||||
turn find the newly constructed type in an invalid state) */
|
||||
auto metaclass = rec.metaclass.ptr() ? (PyTypeObject *) rec.metaclass.ptr()
|
||||
: internals.default_metaclass;
|
||||
|
||||
auto heap_type = (PyHeapTypeObject *) metaclass->tp_alloc(metaclass, 0);
|
||||
if (!heap_type)
|
||||
pybind11_fail(std::string(rec.name) + ": Unable to create type object!");
|
||||
|
||||
heap_type->ht_name = name.release().ptr();
|
||||
#ifdef PYBIND11_BUILTIN_QUALNAME
|
||||
heap_type->ht_qualname = qualname.inc_ref().ptr();
|
||||
#endif
|
||||
|
||||
auto type = &heap_type->ht_type;
|
||||
type->tp_name = full_name;
|
||||
type->tp_doc = tp_doc;
|
||||
type->tp_base = type_incref((PyTypeObject *)base);
|
||||
type->tp_basicsize = static_cast<ssize_t>(sizeof(instance));
|
||||
if (bases.size() > 0)
|
||||
type->tp_bases = bases.release().ptr();
|
||||
|
||||
/* Don't inherit base __init__ */
|
||||
type->tp_init = pybind11_object_init;
|
||||
|
||||
/* Supported protocols */
|
||||
type->tp_as_number = &heap_type->as_number;
|
||||
type->tp_as_sequence = &heap_type->as_sequence;
|
||||
type->tp_as_mapping = &heap_type->as_mapping;
|
||||
|
||||
/* Flags */
|
||||
type->tp_flags |= Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
|
||||
#if PY_MAJOR_VERSION < 3
|
||||
type->tp_flags |= Py_TPFLAGS_CHECKTYPES;
|
||||
#endif
|
||||
|
||||
if (rec.dynamic_attr)
|
||||
enable_dynamic_attributes(heap_type);
|
||||
|
||||
if (rec.buffer_protocol)
|
||||
enable_buffer_protocol(heap_type);
|
||||
|
||||
if (PyType_Ready(type) < 0)
|
||||
pybind11_fail(std::string(rec.name) + ": PyType_Ready failed (" + error_string() + ")!");
|
||||
|
||||
assert(rec.dynamic_attr ? PyType_HasFeature(type, Py_TPFLAGS_HAVE_GC)
|
||||
: !PyType_HasFeature(type, Py_TPFLAGS_HAVE_GC));
|
||||
|
||||
/* Register type with the parent scope */
|
||||
if (rec.scope)
|
||||
setattr(rec.scope, rec.name, (PyObject *) type);
|
||||
else
|
||||
Py_INCREF(type); // Keep it alive forever (reference leak)
|
||||
|
||||
if (module) // Needed by pydoc
|
||||
setattr((PyObject *) type, "__module__", module);
|
||||
|
||||
PYBIND11_SET_OLDPY_QUALNAME(type, qualname);
|
||||
|
||||
return (PyObject *) type;
|
||||
}
|
||||
|
||||
NAMESPACE_END(detail)
|
||||
NAMESPACE_END(PYBIND11_NAMESPACE)
|
807
python/src/pybind11/detail/common.h
Normal file
807
python/src/pybind11/detail/common.h
Normal file
@@ -0,0 +1,807 @@
|
||||
/*
|
||||
pybind11/detail/common.h -- Basic macros
|
||||
|
||||
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
|
||||
|
||||
All rights reserved. Use of this source code is governed by a
|
||||
BSD-style license that can be found in the LICENSE file.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#if !defined(NAMESPACE_BEGIN)
|
||||
# define NAMESPACE_BEGIN(name) namespace name {
|
||||
#endif
|
||||
#if !defined(NAMESPACE_END)
|
||||
# define NAMESPACE_END(name) }
|
||||
#endif
|
||||
|
||||
// Robust support for some features and loading modules compiled against different pybind versions
|
||||
// requires forcing hidden visibility on pybind code, so we enforce this by setting the attribute on
|
||||
// the main `pybind11` namespace.
|
||||
#if !defined(PYBIND11_NAMESPACE)
|
||||
# ifdef __GNUG__
|
||||
# define PYBIND11_NAMESPACE pybind11 __attribute__((visibility("hidden")))
|
||||
# else
|
||||
# define PYBIND11_NAMESPACE pybind11
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if !(defined(_MSC_VER) && __cplusplus == 199711L) && !defined(__INTEL_COMPILER)
|
||||
# if __cplusplus >= 201402L
|
||||
# define PYBIND11_CPP14
|
||||
# if __cplusplus >= 201703L
|
||||
# define PYBIND11_CPP17
|
||||
# endif
|
||||
# endif
|
||||
#elif defined(_MSC_VER) && __cplusplus == 199711L
|
||||
// MSVC sets _MSVC_LANG rather than __cplusplus (supposedly until the standard is fully implemented)
|
||||
// Unless you use the /Zc:__cplusplus flag on Visual Studio 2017 15.7 Preview 3 or newer
|
||||
# if _MSVC_LANG >= 201402L
|
||||
# define PYBIND11_CPP14
|
||||
# if _MSVC_LANG > 201402L && _MSC_VER >= 1910
|
||||
# define PYBIND11_CPP17
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
// Compiler version assertions
|
||||
#if defined(__INTEL_COMPILER)
|
||||
# if __INTEL_COMPILER < 1700
|
||||
# error pybind11 requires Intel C++ compiler v17 or newer
|
||||
# endif
|
||||
#elif defined(__clang__) && !defined(__apple_build_version__)
|
||||
# if __clang_major__ < 3 || (__clang_major__ == 3 && __clang_minor__ < 3)
|
||||
# error pybind11 requires clang 3.3 or newer
|
||||
# endif
|
||||
#elif defined(__clang__)
|
||||
// Apple changes clang version macros to its Xcode version; the first Xcode release based on
|
||||
// (upstream) clang 3.3 was Xcode 5:
|
||||
# if __clang_major__ < 5
|
||||
# error pybind11 requires Xcode/clang 5.0 or newer
|
||||
# endif
|
||||
#elif defined(__GNUG__)
|
||||
# if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 8)
|
||||
# error pybind11 requires gcc 4.8 or newer
|
||||
# endif
|
||||
#elif defined(_MSC_VER)
|
||||
// Pybind hits various compiler bugs in 2015u2 and earlier, and also makes use of some stl features
|
||||
// (e.g. std::negation) added in 2015u3:
|
||||
# if _MSC_FULL_VER < 190024210
|
||||
# error pybind11 requires MSVC 2015 update 3 or newer
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if !defined(PYBIND11_EXPORT)
|
||||
# if defined(WIN32) || defined(_WIN32)
|
||||
# define PYBIND11_EXPORT __declspec(dllexport)
|
||||
# else
|
||||
# define PYBIND11_EXPORT __attribute__ ((visibility("default")))
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
# define PYBIND11_NOINLINE __declspec(noinline)
|
||||
#else
|
||||
# define PYBIND11_NOINLINE __attribute__ ((noinline))
|
||||
#endif
|
||||
|
||||
#if defined(PYBIND11_CPP14)
|
||||
# define PYBIND11_DEPRECATED(reason) [[deprecated(reason)]]
|
||||
#else
|
||||
# define PYBIND11_DEPRECATED(reason) __attribute__((deprecated(reason)))
|
||||
#endif
|
||||
|
||||
#define PYBIND11_VERSION_MAJOR 2
|
||||
#define PYBIND11_VERSION_MINOR 3
|
||||
#define PYBIND11_VERSION_PATCH 0
|
||||
|
||||
/// Include Python header, disable linking to pythonX_d.lib on Windows in debug mode
|
||||
#if defined(_MSC_VER)
|
||||
# if (PY_MAJOR_VERSION == 3 && PY_MINOR_VERSION < 4)
|
||||
# define HAVE_ROUND 1
|
||||
# endif
|
||||
# pragma warning(push)
|
||||
# pragma warning(disable: 4510 4610 4512 4005)
|
||||
# if defined(_DEBUG)
|
||||
# define PYBIND11_DEBUG_MARKER
|
||||
# undef _DEBUG
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#include <Python.h>
|
||||
#include <frameobject.h>
|
||||
#include <pythread.h>
|
||||
|
||||
#if defined(_WIN32) && (defined(min) || defined(max))
|
||||
# error Macro clash with min and max -- define NOMINMAX when compiling your program on Windows
|
||||
#endif
|
||||
|
||||
#if defined(isalnum)
|
||||
# undef isalnum
|
||||
# undef isalpha
|
||||
# undef islower
|
||||
# undef isspace
|
||||
# undef isupper
|
||||
# undef tolower
|
||||
# undef toupper
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
# if defined(PYBIND11_DEBUG_MARKER)
|
||||
# define _DEBUG
|
||||
# undef PYBIND11_DEBUG_MARKER
|
||||
# endif
|
||||
# pragma warning(pop)
|
||||
#endif
|
||||
|
||||
#include <cstddef>
|
||||
#include <cstring>
|
||||
#include <forward_list>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <stdexcept>
|
||||
#include <unordered_set>
|
||||
#include <unordered_map>
|
||||
#include <memory>
|
||||
#include <typeindex>
|
||||
#include <type_traits>
|
||||
|
||||
#if PY_MAJOR_VERSION >= 3 /// Compatibility macros for various Python versions
|
||||
#define PYBIND11_INSTANCE_METHOD_NEW(ptr, class_) PyInstanceMethod_New(ptr)
|
||||
#define PYBIND11_INSTANCE_METHOD_CHECK PyInstanceMethod_Check
|
||||
#define PYBIND11_INSTANCE_METHOD_GET_FUNCTION PyInstanceMethod_GET_FUNCTION
|
||||
#define PYBIND11_BYTES_CHECK PyBytes_Check
|
||||
#define PYBIND11_BYTES_FROM_STRING PyBytes_FromString
|
||||
#define PYBIND11_BYTES_FROM_STRING_AND_SIZE PyBytes_FromStringAndSize
|
||||
#define PYBIND11_BYTES_AS_STRING_AND_SIZE PyBytes_AsStringAndSize
|
||||
#define PYBIND11_BYTES_AS_STRING PyBytes_AsString
|
||||
#define PYBIND11_BYTES_SIZE PyBytes_Size
|
||||
#define PYBIND11_LONG_CHECK(o) PyLong_Check(o)
|
||||
#define PYBIND11_LONG_AS_LONGLONG(o) PyLong_AsLongLong(o)
|
||||
#define PYBIND11_LONG_FROM_SIGNED(o) PyLong_FromSsize_t((ssize_t) o)
|
||||
#define PYBIND11_LONG_FROM_UNSIGNED(o) PyLong_FromSize_t((size_t) o)
|
||||
#define PYBIND11_BYTES_NAME "bytes"
|
||||
#define PYBIND11_STRING_NAME "str"
|
||||
#define PYBIND11_SLICE_OBJECT PyObject
|
||||
#define PYBIND11_FROM_STRING PyUnicode_FromString
|
||||
#define PYBIND11_STR_TYPE ::pybind11::str
|
||||
#define PYBIND11_BOOL_ATTR "__bool__"
|
||||
#define PYBIND11_NB_BOOL(ptr) ((ptr)->nb_bool)
|
||||
#define PYBIND11_PLUGIN_IMPL(name) \
|
||||
extern "C" PYBIND11_EXPORT PyObject *PyInit_##name()
|
||||
|
||||
#else
|
||||
#define PYBIND11_INSTANCE_METHOD_NEW(ptr, class_) PyMethod_New(ptr, nullptr, class_)
|
||||
#define PYBIND11_INSTANCE_METHOD_CHECK PyMethod_Check
|
||||
#define PYBIND11_INSTANCE_METHOD_GET_FUNCTION PyMethod_GET_FUNCTION
|
||||
#define PYBIND11_BYTES_CHECK PyString_Check
|
||||
#define PYBIND11_BYTES_FROM_STRING PyString_FromString
|
||||
#define PYBIND11_BYTES_FROM_STRING_AND_SIZE PyString_FromStringAndSize
|
||||
#define PYBIND11_BYTES_AS_STRING_AND_SIZE PyString_AsStringAndSize
|
||||
#define PYBIND11_BYTES_AS_STRING PyString_AsString
|
||||
#define PYBIND11_BYTES_SIZE PyString_Size
|
||||
#define PYBIND11_LONG_CHECK(o) (PyInt_Check(o) || PyLong_Check(o))
|
||||
#define PYBIND11_LONG_AS_LONGLONG(o) (PyInt_Check(o) ? (long long) PyLong_AsLong(o) : PyLong_AsLongLong(o))
|
||||
#define PYBIND11_LONG_FROM_SIGNED(o) PyInt_FromSsize_t((ssize_t) o) // Returns long if needed.
|
||||
#define PYBIND11_LONG_FROM_UNSIGNED(o) PyInt_FromSize_t((size_t) o) // Returns long if needed.
|
||||
#define PYBIND11_BYTES_NAME "str"
|
||||
#define PYBIND11_STRING_NAME "unicode"
|
||||
#define PYBIND11_SLICE_OBJECT PySliceObject
|
||||
#define PYBIND11_FROM_STRING PyString_FromString
|
||||
#define PYBIND11_STR_TYPE ::pybind11::bytes
|
||||
#define PYBIND11_BOOL_ATTR "__nonzero__"
|
||||
#define PYBIND11_NB_BOOL(ptr) ((ptr)->nb_nonzero)
|
||||
#define PYBIND11_PLUGIN_IMPL(name) \
|
||||
static PyObject *pybind11_init_wrapper(); \
|
||||
extern "C" PYBIND11_EXPORT void init##name() { \
|
||||
(void)pybind11_init_wrapper(); \
|
||||
} \
|
||||
PyObject *pybind11_init_wrapper()
|
||||
#endif
|
||||
|
||||
#if PY_VERSION_HEX >= 0x03050000 && PY_VERSION_HEX < 0x03050200
|
||||
extern "C" {
|
||||
struct _Py_atomic_address { void *value; };
|
||||
PyAPI_DATA(_Py_atomic_address) _PyThreadState_Current;
|
||||
}
|
||||
#endif
|
||||
|
||||
#define PYBIND11_TRY_NEXT_OVERLOAD ((PyObject *) 1) // special failure return code
|
||||
#define PYBIND11_STRINGIFY(x) #x
|
||||
#define PYBIND11_TOSTRING(x) PYBIND11_STRINGIFY(x)
|
||||
#define PYBIND11_CONCAT(first, second) first##second
|
||||
|
||||
#define PYBIND11_CHECK_PYTHON_VERSION \
|
||||
{ \
|
||||
const char *compiled_ver = PYBIND11_TOSTRING(PY_MAJOR_VERSION) \
|
||||
"." PYBIND11_TOSTRING(PY_MINOR_VERSION); \
|
||||
const char *runtime_ver = Py_GetVersion(); \
|
||||
size_t len = std::strlen(compiled_ver); \
|
||||
if (std::strncmp(runtime_ver, compiled_ver, len) != 0 \
|
||||
|| (runtime_ver[len] >= '0' && runtime_ver[len] <= '9')) { \
|
||||
PyErr_Format(PyExc_ImportError, \
|
||||
"Python version mismatch: module was compiled for Python %s, " \
|
||||
"but the interpreter version is incompatible: %s.", \
|
||||
compiled_ver, runtime_ver); \
|
||||
return nullptr; \
|
||||
} \
|
||||
}
|
||||
|
||||
#define PYBIND11_CATCH_INIT_EXCEPTIONS \
|
||||
catch (pybind11::error_already_set &e) { \
|
||||
PyErr_SetString(PyExc_ImportError, e.what()); \
|
||||
return nullptr; \
|
||||
} catch (const std::exception &e) { \
|
||||
PyErr_SetString(PyExc_ImportError, e.what()); \
|
||||
return nullptr; \
|
||||
} \
|
||||
|
||||
/** \rst
|
||||
***Deprecated in favor of PYBIND11_MODULE***
|
||||
|
||||
This macro creates the entry point that will be invoked when the Python interpreter
|
||||
imports a plugin library. Please create a `module` in the function body and return
|
||||
the pointer to its underlying Python object at the end.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
PYBIND11_PLUGIN(example) {
|
||||
pybind11::module m("example", "pybind11 example plugin");
|
||||
/// Set up bindings here
|
||||
return m.ptr();
|
||||
}
|
||||
\endrst */
|
||||
#define PYBIND11_PLUGIN(name) \
|
||||
PYBIND11_DEPRECATED("PYBIND11_PLUGIN is deprecated, use PYBIND11_MODULE") \
|
||||
static PyObject *pybind11_init(); \
|
||||
PYBIND11_PLUGIN_IMPL(name) { \
|
||||
PYBIND11_CHECK_PYTHON_VERSION \
|
||||
try { \
|
||||
return pybind11_init(); \
|
||||
} PYBIND11_CATCH_INIT_EXCEPTIONS \
|
||||
} \
|
||||
PyObject *pybind11_init()
|
||||
|
||||
/** \rst
|
||||
This macro creates the entry point that will be invoked when the Python interpreter
|
||||
imports an extension module. The module name is given as the fist argument and it
|
||||
should not be in quotes. The second macro argument defines a variable of type
|
||||
`py::module` which can be used to initialize the module.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
PYBIND11_MODULE(example, m) {
|
||||
m.doc() = "pybind11 example module";
|
||||
|
||||
// Add bindings here
|
||||
m.def("foo", []() {
|
||||
return "Hello, World!";
|
||||
});
|
||||
}
|
||||
\endrst */
|
||||
#define PYBIND11_MODULE(name, variable) \
|
||||
static void PYBIND11_CONCAT(pybind11_init_, name)(pybind11::module &); \
|
||||
PYBIND11_PLUGIN_IMPL(name) { \
|
||||
PYBIND11_CHECK_PYTHON_VERSION \
|
||||
auto m = pybind11::module(PYBIND11_TOSTRING(name)); \
|
||||
try { \
|
||||
PYBIND11_CONCAT(pybind11_init_, name)(m); \
|
||||
return m.ptr(); \
|
||||
} PYBIND11_CATCH_INIT_EXCEPTIONS \
|
||||
} \
|
||||
void PYBIND11_CONCAT(pybind11_init_, name)(pybind11::module &variable)
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
|
||||
|
||||
using ssize_t = Py_ssize_t;
|
||||
using size_t = std::size_t;
|
||||
|
||||
/// Approach used to cast a previously unknown C++ instance into a Python object
|
||||
enum class return_value_policy : uint8_t {
|
||||
/** This is the default return value policy, which falls back to the policy
|
||||
return_value_policy::take_ownership when the return value is a pointer.
|
||||
Otherwise, it uses return_value::move or return_value::copy for rvalue
|
||||
and lvalue references, respectively. See below for a description of what
|
||||
all of these different policies do. */
|
||||
automatic = 0,
|
||||
|
||||
/** As above, but use policy return_value_policy::reference when the return
|
||||
value is a pointer. This is the default conversion policy for function
|
||||
arguments when calling Python functions manually from C++ code (i.e. via
|
||||
handle::operator()). You probably won't need to use this. */
|
||||
automatic_reference,
|
||||
|
||||
/** Reference an existing object (i.e. do not create a new copy) and take
|
||||
ownership. Python will call the destructor and delete operator when the
|
||||
object’s reference count reaches zero. Undefined behavior ensues when
|
||||
the C++ side does the same.. */
|
||||
take_ownership,
|
||||
|
||||
/** Create a new copy of the returned object, which will be owned by
|
||||
Python. This policy is comparably safe because the lifetimes of the two
|
||||
instances are decoupled. */
|
||||
copy,
|
||||
|
||||
/** Use std::move to move the return value contents into a new instance
|
||||
that will be owned by Python. This policy is comparably safe because the
|
||||
lifetimes of the two instances (move source and destination) are
|
||||
decoupled. */
|
||||
move,
|
||||
|
||||
/** Reference an existing object, but do not take ownership. The C++ side
|
||||
is responsible for managing the object’s lifetime and deallocating it
|
||||
when it is no longer used. Warning: undefined behavior will ensue when
|
||||
the C++ side deletes an object that is still referenced and used by
|
||||
Python. */
|
||||
reference,
|
||||
|
||||
/** This policy only applies to methods and properties. It references the
|
||||
object without taking ownership similar to the above
|
||||
return_value_policy::reference policy. In contrast to that policy, the
|
||||
function or property’s implicit this argument (called the parent) is
|
||||
considered to be the the owner of the return value (the child).
|
||||
pybind11 then couples the lifetime of the parent to the child via a
|
||||
reference relationship that ensures that the parent cannot be garbage
|
||||
collected while Python is still using the child. More advanced
|
||||
variations of this scheme are also possible using combinations of
|
||||
return_value_policy::reference and the keep_alive call policy */
|
||||
reference_internal
|
||||
};
|
||||
|
||||
NAMESPACE_BEGIN(detail)
|
||||
|
||||
inline static constexpr int log2(size_t n, int k = 0) { return (n <= 1) ? k : log2(n >> 1, k + 1); }
|
||||
|
||||
// Returns the size as a multiple of sizeof(void *), rounded up.
|
||||
inline static constexpr size_t size_in_ptrs(size_t s) { return 1 + ((s - 1) >> log2(sizeof(void *))); }
|
||||
|
||||
/**
|
||||
* The space to allocate for simple layout instance holders (see below) in multiple of the size of
|
||||
* a pointer (e.g. 2 means 16 bytes on 64-bit architectures). The default is the minimum required
|
||||
* to holder either a std::unique_ptr or std::shared_ptr (which is almost always
|
||||
* sizeof(std::shared_ptr<T>)).
|
||||
*/
|
||||
constexpr size_t instance_simple_holder_in_ptrs() {
|
||||
static_assert(sizeof(std::shared_ptr<int>) >= sizeof(std::unique_ptr<int>),
|
||||
"pybind assumes std::shared_ptrs are at least as big as std::unique_ptrs");
|
||||
return size_in_ptrs(sizeof(std::shared_ptr<int>));
|
||||
}
|
||||
|
||||
// Forward declarations
|
||||
struct type_info;
|
||||
struct value_and_holder;
|
||||
|
||||
struct nonsimple_values_and_holders {
|
||||
void **values_and_holders;
|
||||
uint8_t *status;
|
||||
};
|
||||
|
||||
/// The 'instance' type which needs to be standard layout (need to be able to use 'offsetof')
|
||||
struct instance {
|
||||
PyObject_HEAD
|
||||
/// Storage for pointers and holder; see simple_layout, below, for a description
|
||||
union {
|
||||
void *simple_value_holder[1 + instance_simple_holder_in_ptrs()];
|
||||
nonsimple_values_and_holders nonsimple;
|
||||
};
|
||||
/// Weak references
|
||||
PyObject *weakrefs;
|
||||
/// If true, the pointer is owned which means we're free to manage it with a holder.
|
||||
bool owned : 1;
|
||||
/**
|
||||
* An instance has two possible value/holder layouts.
|
||||
*
|
||||
* Simple layout (when this flag is true), means the `simple_value_holder` is set with a pointer
|
||||
* and the holder object governing that pointer, i.e. [val1*][holder]. This layout is applied
|
||||
* whenever there is no python-side multiple inheritance of bound C++ types *and* the type's
|
||||
* holder will fit in the default space (which is large enough to hold either a std::unique_ptr
|
||||
* or std::shared_ptr).
|
||||
*
|
||||
* Non-simple layout applies when using custom holders that require more space than `shared_ptr`
|
||||
* (which is typically the size of two pointers), or when multiple inheritance is used on the
|
||||
* python side. Non-simple layout allocates the required amount of memory to have multiple
|
||||
* bound C++ classes as parents. Under this layout, `nonsimple.values_and_holders` is set to a
|
||||
* pointer to allocated space of the required space to hold a sequence of value pointers and
|
||||
* holders followed `status`, a set of bit flags (1 byte each), i.e.
|
||||
* [val1*][holder1][val2*][holder2]...[bb...] where each [block] is rounded up to a multiple of
|
||||
* `sizeof(void *)`. `nonsimple.status` is, for convenience, a pointer to the
|
||||
* beginning of the [bb...] block (but not independently allocated).
|
||||
*
|
||||
* Status bits indicate whether the associated holder is constructed (&
|
||||
* status_holder_constructed) and whether the value pointer is registered (&
|
||||
* status_instance_registered) in `registered_instances`.
|
||||
*/
|
||||
bool simple_layout : 1;
|
||||
/// For simple layout, tracks whether the holder has been constructed
|
||||
bool simple_holder_constructed : 1;
|
||||
/// For simple layout, tracks whether the instance is registered in `registered_instances`
|
||||
bool simple_instance_registered : 1;
|
||||
/// If true, get_internals().patients has an entry for this object
|
||||
bool has_patients : 1;
|
||||
|
||||
/// Initializes all of the above type/values/holders data (but not the instance values themselves)
|
||||
void allocate_layout();
|
||||
|
||||
/// Destroys/deallocates all of the above
|
||||
void deallocate_layout();
|
||||
|
||||
/// Returns the value_and_holder wrapper for the given type (or the first, if `find_type`
|
||||
/// omitted). Returns a default-constructed (with `.inst = nullptr`) object on failure if
|
||||
/// `throw_if_missing` is false.
|
||||
value_and_holder get_value_and_holder(const type_info *find_type = nullptr, bool throw_if_missing = true);
|
||||
|
||||
/// Bit values for the non-simple status flags
|
||||
static constexpr uint8_t status_holder_constructed = 1;
|
||||
static constexpr uint8_t status_instance_registered = 2;
|
||||
};
|
||||
|
||||
static_assert(std::is_standard_layout<instance>::value, "Internal error: `pybind11::detail::instance` is not standard layout!");
|
||||
|
||||
/// from __cpp_future__ import (convenient aliases from C++14/17)
|
||||
#if defined(PYBIND11_CPP14) && (!defined(_MSC_VER) || _MSC_VER >= 1910)
|
||||
using std::enable_if_t;
|
||||
using std::conditional_t;
|
||||
using std::remove_cv_t;
|
||||
using std::remove_reference_t;
|
||||
#else
|
||||
template <bool B, typename T = void> using enable_if_t = typename std::enable_if<B, T>::type;
|
||||
template <bool B, typename T, typename F> using conditional_t = typename std::conditional<B, T, F>::type;
|
||||
template <typename T> using remove_cv_t = typename std::remove_cv<T>::type;
|
||||
template <typename T> using remove_reference_t = typename std::remove_reference<T>::type;
|
||||
#endif
|
||||
|
||||
/// Index sequences
|
||||
#if defined(PYBIND11_CPP14)
|
||||
using std::index_sequence;
|
||||
using std::make_index_sequence;
|
||||
#else
|
||||
template<size_t ...> struct index_sequence { };
|
||||
template<size_t N, size_t ...S> struct make_index_sequence_impl : make_index_sequence_impl <N - 1, N - 1, S...> { };
|
||||
template<size_t ...S> struct make_index_sequence_impl <0, S...> { typedef index_sequence<S...> type; };
|
||||
template<size_t N> using make_index_sequence = typename make_index_sequence_impl<N>::type;
|
||||
#endif
|
||||
|
||||
/// Make an index sequence of the indices of true arguments
|
||||
template <typename ISeq, size_t, bool...> struct select_indices_impl { using type = ISeq; };
|
||||
template <size_t... IPrev, size_t I, bool B, bool... Bs> struct select_indices_impl<index_sequence<IPrev...>, I, B, Bs...>
|
||||
: select_indices_impl<conditional_t<B, index_sequence<IPrev..., I>, index_sequence<IPrev...>>, I + 1, Bs...> {};
|
||||
template <bool... Bs> using select_indices = typename select_indices_impl<index_sequence<>, 0, Bs...>::type;
|
||||
|
||||
/// Backports of std::bool_constant and std::negation to accommodate older compilers
|
||||
template <bool B> using bool_constant = std::integral_constant<bool, B>;
|
||||
template <typename T> struct negation : bool_constant<!T::value> { };
|
||||
|
||||
template <typename...> struct void_t_impl { using type = void; };
|
||||
template <typename... Ts> using void_t = typename void_t_impl<Ts...>::type;
|
||||
|
||||
/// Compile-time all/any/none of that check the boolean value of all template types
|
||||
#if defined(__cpp_fold_expressions) && !(defined(_MSC_VER) && (_MSC_VER < 1916))
|
||||
template <class... Ts> using all_of = bool_constant<(Ts::value && ...)>;
|
||||
template <class... Ts> using any_of = bool_constant<(Ts::value || ...)>;
|
||||
#elif !defined(_MSC_VER)
|
||||
template <bool...> struct bools {};
|
||||
template <class... Ts> using all_of = std::is_same<
|
||||
bools<Ts::value..., true>,
|
||||
bools<true, Ts::value...>>;
|
||||
template <class... Ts> using any_of = negation<all_of<negation<Ts>...>>;
|
||||
#else
|
||||
// MSVC has trouble with the above, but supports std::conjunction, which we can use instead (albeit
|
||||
// at a slight loss of compilation efficiency).
|
||||
template <class... Ts> using all_of = std::conjunction<Ts...>;
|
||||
template <class... Ts> using any_of = std::disjunction<Ts...>;
|
||||
#endif
|
||||
template <class... Ts> using none_of = negation<any_of<Ts...>>;
|
||||
|
||||
template <class T, template<class> class... Predicates> using satisfies_all_of = all_of<Predicates<T>...>;
|
||||
template <class T, template<class> class... Predicates> using satisfies_any_of = any_of<Predicates<T>...>;
|
||||
template <class T, template<class> class... Predicates> using satisfies_none_of = none_of<Predicates<T>...>;
|
||||
|
||||
/// Strip the class from a method type
|
||||
template <typename T> struct remove_class { };
|
||||
template <typename C, typename R, typename... A> struct remove_class<R (C::*)(A...)> { typedef R type(A...); };
|
||||
template <typename C, typename R, typename... A> struct remove_class<R (C::*)(A...) const> { typedef R type(A...); };
|
||||
|
||||
/// Helper template to strip away type modifiers
|
||||
template <typename T> struct intrinsic_type { typedef T type; };
|
||||
template <typename T> struct intrinsic_type<const T> { typedef typename intrinsic_type<T>::type type; };
|
||||
template <typename T> struct intrinsic_type<T*> { typedef typename intrinsic_type<T>::type type; };
|
||||
template <typename T> struct intrinsic_type<T&> { typedef typename intrinsic_type<T>::type type; };
|
||||
template <typename T> struct intrinsic_type<T&&> { typedef typename intrinsic_type<T>::type type; };
|
||||
template <typename T, size_t N> struct intrinsic_type<const T[N]> { typedef typename intrinsic_type<T>::type type; };
|
||||
template <typename T, size_t N> struct intrinsic_type<T[N]> { typedef typename intrinsic_type<T>::type type; };
|
||||
template <typename T> using intrinsic_t = typename intrinsic_type<T>::type;
|
||||
|
||||
/// Helper type to replace 'void' in some expressions
|
||||
struct void_type { };
|
||||
|
||||
/// Helper template which holds a list of types
|
||||
template <typename...> struct type_list { };
|
||||
|
||||
/// Compile-time integer sum
|
||||
#ifdef __cpp_fold_expressions
|
||||
template <typename... Ts> constexpr size_t constexpr_sum(Ts... ns) { return (0 + ... + size_t{ns}); }
|
||||
#else
|
||||
constexpr size_t constexpr_sum() { return 0; }
|
||||
template <typename T, typename... Ts>
|
||||
constexpr size_t constexpr_sum(T n, Ts... ns) { return size_t{n} + constexpr_sum(ns...); }
|
||||
#endif
|
||||
|
||||
NAMESPACE_BEGIN(constexpr_impl)
|
||||
/// Implementation details for constexpr functions
|
||||
constexpr int first(int i) { return i; }
|
||||
template <typename T, typename... Ts>
|
||||
constexpr int first(int i, T v, Ts... vs) { return v ? i : first(i + 1, vs...); }
|
||||
|
||||
constexpr int last(int /*i*/, int result) { return result; }
|
||||
template <typename T, typename... Ts>
|
||||
constexpr int last(int i, int result, T v, Ts... vs) { return last(i + 1, v ? i : result, vs...); }
|
||||
NAMESPACE_END(constexpr_impl)
|
||||
|
||||
/// Return the index of the first type in Ts which satisfies Predicate<T>. Returns sizeof...(Ts) if
|
||||
/// none match.
|
||||
template <template<typename> class Predicate, typename... Ts>
|
||||
constexpr int constexpr_first() { return constexpr_impl::first(0, Predicate<Ts>::value...); }
|
||||
|
||||
/// Return the index of the last type in Ts which satisfies Predicate<T>, or -1 if none match.
|
||||
template <template<typename> class Predicate, typename... Ts>
|
||||
constexpr int constexpr_last() { return constexpr_impl::last(0, -1, Predicate<Ts>::value...); }
|
||||
|
||||
/// Return the Nth element from the parameter pack
|
||||
template <size_t N, typename T, typename... Ts>
|
||||
struct pack_element { using type = typename pack_element<N - 1, Ts...>::type; };
|
||||
template <typename T, typename... Ts>
|
||||
struct pack_element<0, T, Ts...> { using type = T; };
|
||||
|
||||
/// Return the one and only type which matches the predicate, or Default if none match.
|
||||
/// If more than one type matches the predicate, fail at compile-time.
|
||||
template <template<typename> class Predicate, typename Default, typename... Ts>
|
||||
struct exactly_one {
|
||||
static constexpr auto found = constexpr_sum(Predicate<Ts>::value...);
|
||||
static_assert(found <= 1, "Found more than one type matching the predicate");
|
||||
|
||||
static constexpr auto index = found ? constexpr_first<Predicate, Ts...>() : 0;
|
||||
using type = conditional_t<found, typename pack_element<index, Ts...>::type, Default>;
|
||||
};
|
||||
template <template<typename> class P, typename Default>
|
||||
struct exactly_one<P, Default> { using type = Default; };
|
||||
|
||||
template <template<typename> class Predicate, typename Default, typename... Ts>
|
||||
using exactly_one_t = typename exactly_one<Predicate, Default, Ts...>::type;
|
||||
|
||||
/// Defer the evaluation of type T until types Us are instantiated
|
||||
template <typename T, typename... /*Us*/> struct deferred_type { using type = T; };
|
||||
template <typename T, typename... Us> using deferred_t = typename deferred_type<T, Us...>::type;
|
||||
|
||||
/// Like is_base_of, but requires a strict base (i.e. `is_strict_base_of<T, T>::value == false`,
|
||||
/// unlike `std::is_base_of`)
|
||||
template <typename Base, typename Derived> using is_strict_base_of = bool_constant<
|
||||
std::is_base_of<Base, Derived>::value && !std::is_same<Base, Derived>::value>;
|
||||
|
||||
/// Like is_base_of, but also requires that the base type is accessible (i.e. that a Derived pointer
|
||||
/// can be converted to a Base pointer)
|
||||
template <typename Base, typename Derived> using is_accessible_base_of = bool_constant<
|
||||
std::is_base_of<Base, Derived>::value && std::is_convertible<Derived *, Base *>::value>;
|
||||
|
||||
template <template<typename...> class Base>
|
||||
struct is_template_base_of_impl {
|
||||
template <typename... Us> static std::true_type check(Base<Us...> *);
|
||||
static std::false_type check(...);
|
||||
};
|
||||
|
||||
/// Check if a template is the base of a type. For example:
|
||||
/// `is_template_base_of<Base, T>` is true if `struct T : Base<U> {}` where U can be anything
|
||||
template <template<typename...> class Base, typename T>
|
||||
#if !defined(_MSC_VER)
|
||||
using is_template_base_of = decltype(is_template_base_of_impl<Base>::check((intrinsic_t<T>*)nullptr));
|
||||
#else // MSVC2015 has trouble with decltype in template aliases
|
||||
struct is_template_base_of : decltype(is_template_base_of_impl<Base>::check((intrinsic_t<T>*)nullptr)) { };
|
||||
#endif
|
||||
|
||||
/// Check if T is an instantiation of the template `Class`. For example:
|
||||
/// `is_instantiation<shared_ptr, T>` is true if `T == shared_ptr<U>` where U can be anything.
|
||||
template <template<typename...> class Class, typename T>
|
||||
struct is_instantiation : std::false_type { };
|
||||
template <template<typename...> class Class, typename... Us>
|
||||
struct is_instantiation<Class, Class<Us...>> : std::true_type { };
|
||||
|
||||
/// Check if T is std::shared_ptr<U> where U can be anything
|
||||
template <typename T> using is_shared_ptr = is_instantiation<std::shared_ptr, T>;
|
||||
|
||||
/// Check if T looks like an input iterator
|
||||
template <typename T, typename = void> struct is_input_iterator : std::false_type {};
|
||||
template <typename T>
|
||||
struct is_input_iterator<T, void_t<decltype(*std::declval<T &>()), decltype(++std::declval<T &>())>>
|
||||
: std::true_type {};
|
||||
|
||||
template <typename T> using is_function_pointer = bool_constant<
|
||||
std::is_pointer<T>::value && std::is_function<typename std::remove_pointer<T>::type>::value>;
|
||||
|
||||
template <typename F> struct strip_function_object {
|
||||
using type = typename remove_class<decltype(&F::operator())>::type;
|
||||
};
|
||||
|
||||
// Extracts the function signature from a function, function pointer or lambda.
|
||||
template <typename Function, typename F = remove_reference_t<Function>>
|
||||
using function_signature_t = conditional_t<
|
||||
std::is_function<F>::value,
|
||||
F,
|
||||
typename conditional_t<
|
||||
std::is_pointer<F>::value || std::is_member_pointer<F>::value,
|
||||
std::remove_pointer<F>,
|
||||
strip_function_object<F>
|
||||
>::type
|
||||
>;
|
||||
|
||||
/// Returns true if the type looks like a lambda: that is, isn't a function, pointer or member
|
||||
/// pointer. Note that this can catch all sorts of other things, too; this is intended to be used
|
||||
/// in a place where passing a lambda makes sense.
|
||||
template <typename T> using is_lambda = satisfies_none_of<remove_reference_t<T>,
|
||||
std::is_function, std::is_pointer, std::is_member_pointer>;
|
||||
|
||||
/// Ignore that a variable is unused in compiler warnings
|
||||
inline void ignore_unused(const int *) { }
|
||||
|
||||
/// Apply a function over each element of a parameter pack
|
||||
#ifdef __cpp_fold_expressions
|
||||
#define PYBIND11_EXPAND_SIDE_EFFECTS(PATTERN) (((PATTERN), void()), ...)
|
||||
#else
|
||||
using expand_side_effects = bool[];
|
||||
#define PYBIND11_EXPAND_SIDE_EFFECTS(PATTERN) pybind11::detail::expand_side_effects{ ((PATTERN), void(), false)..., false }
|
||||
#endif
|
||||
|
||||
NAMESPACE_END(detail)
|
||||
|
||||
/// C++ bindings of builtin Python exceptions
|
||||
class builtin_exception : public std::runtime_error {
|
||||
public:
|
||||
using std::runtime_error::runtime_error;
|
||||
/// Set the error using the Python C API
|
||||
virtual void set_error() const = 0;
|
||||
};
|
||||
|
||||
#define PYBIND11_RUNTIME_EXCEPTION(name, type) \
|
||||
class name : public builtin_exception { public: \
|
||||
using builtin_exception::builtin_exception; \
|
||||
name() : name("") { } \
|
||||
void set_error() const override { PyErr_SetString(type, what()); } \
|
||||
};
|
||||
|
||||
PYBIND11_RUNTIME_EXCEPTION(stop_iteration, PyExc_StopIteration)
|
||||
PYBIND11_RUNTIME_EXCEPTION(index_error, PyExc_IndexError)
|
||||
PYBIND11_RUNTIME_EXCEPTION(key_error, PyExc_KeyError)
|
||||
PYBIND11_RUNTIME_EXCEPTION(value_error, PyExc_ValueError)
|
||||
PYBIND11_RUNTIME_EXCEPTION(type_error, PyExc_TypeError)
|
||||
PYBIND11_RUNTIME_EXCEPTION(cast_error, PyExc_RuntimeError) /// Thrown when pybind11::cast or handle::call fail due to a type casting error
|
||||
PYBIND11_RUNTIME_EXCEPTION(reference_cast_error, PyExc_RuntimeError) /// Used internally
|
||||
|
||||
[[noreturn]] PYBIND11_NOINLINE inline void pybind11_fail(const char *reason) { throw std::runtime_error(reason); }
|
||||
[[noreturn]] PYBIND11_NOINLINE inline void pybind11_fail(const std::string &reason) { throw std::runtime_error(reason); }
|
||||
|
||||
template <typename T, typename SFINAE = void> struct format_descriptor { };
|
||||
|
||||
NAMESPACE_BEGIN(detail)
|
||||
// Returns the index of the given type in the type char array below, and in the list in numpy.h
|
||||
// The order here is: bool; 8 ints ((signed,unsigned)x(8,16,32,64)bits); float,double,long double;
|
||||
// complex float,double,long double. Note that the long double types only participate when long
|
||||
// double is actually longer than double (it isn't under MSVC).
|
||||
// NB: not only the string below but also complex.h and numpy.h rely on this order.
|
||||
template <typename T, typename SFINAE = void> struct is_fmt_numeric { static constexpr bool value = false; };
|
||||
template <typename T> struct is_fmt_numeric<T, enable_if_t<std::is_arithmetic<T>::value>> {
|
||||
static constexpr bool value = true;
|
||||
static constexpr int index = std::is_same<T, bool>::value ? 0 : 1 + (
|
||||
std::is_integral<T>::value ? detail::log2(sizeof(T))*2 + std::is_unsigned<T>::value : 8 + (
|
||||
std::is_same<T, double>::value ? 1 : std::is_same<T, long double>::value ? 2 : 0));
|
||||
};
|
||||
NAMESPACE_END(detail)
|
||||
|
||||
template <typename T> struct format_descriptor<T, detail::enable_if_t<std::is_arithmetic<T>::value>> {
|
||||
static constexpr const char c = "?bBhHiIqQfdg"[detail::is_fmt_numeric<T>::index];
|
||||
static constexpr const char value[2] = { c, '\0' };
|
||||
static std::string format() { return std::string(1, c); }
|
||||
};
|
||||
|
||||
#if !defined(PYBIND11_CPP17)
|
||||
|
||||
template <typename T> constexpr const char format_descriptor<
|
||||
T, detail::enable_if_t<std::is_arithmetic<T>::value>>::value[2];
|
||||
|
||||
#endif
|
||||
|
||||
/// RAII wrapper that temporarily clears any Python error state
|
||||
struct error_scope {
|
||||
PyObject *type, *value, *trace;
|
||||
error_scope() { PyErr_Fetch(&type, &value, &trace); }
|
||||
~error_scope() { PyErr_Restore(type, value, trace); }
|
||||
};
|
||||
|
||||
/// Dummy destructor wrapper that can be used to expose classes with a private destructor
|
||||
struct nodelete { template <typename T> void operator()(T*) { } };
|
||||
|
||||
// overload_cast requires variable templates: C++14
|
||||
#if defined(PYBIND11_CPP14)
|
||||
#define PYBIND11_OVERLOAD_CAST 1
|
||||
|
||||
NAMESPACE_BEGIN(detail)
|
||||
template <typename... Args>
|
||||
struct overload_cast_impl {
|
||||
constexpr overload_cast_impl() {} // MSVC 2015 needs this
|
||||
|
||||
template <typename Return>
|
||||
constexpr auto operator()(Return (*pf)(Args...)) const noexcept
|
||||
-> decltype(pf) { return pf; }
|
||||
|
||||
template <typename Return, typename Class>
|
||||
constexpr auto operator()(Return (Class::*pmf)(Args...), std::false_type = {}) const noexcept
|
||||
-> decltype(pmf) { return pmf; }
|
||||
|
||||
template <typename Return, typename Class>
|
||||
constexpr auto operator()(Return (Class::*pmf)(Args...) const, std::true_type) const noexcept
|
||||
-> decltype(pmf) { return pmf; }
|
||||
};
|
||||
NAMESPACE_END(detail)
|
||||
|
||||
/// Syntax sugar for resolving overloaded function pointers:
|
||||
/// - regular: static_cast<Return (Class::*)(Arg0, Arg1, Arg2)>(&Class::func)
|
||||
/// - sweet: overload_cast<Arg0, Arg1, Arg2>(&Class::func)
|
||||
template <typename... Args>
|
||||
static constexpr detail::overload_cast_impl<Args...> overload_cast = {};
|
||||
// MSVC 2015 only accepts this particular initialization syntax for this variable template.
|
||||
|
||||
/// Const member function selector for overload_cast
|
||||
/// - regular: static_cast<Return (Class::*)(Arg) const>(&Class::func)
|
||||
/// - sweet: overload_cast<Arg>(&Class::func, const_)
|
||||
static constexpr auto const_ = std::true_type{};
|
||||
|
||||
#else // no overload_cast: providing something that static_assert-fails:
|
||||
template <typename... Args> struct overload_cast {
|
||||
static_assert(detail::deferred_t<std::false_type, Args...>::value,
|
||||
"pybind11::overload_cast<...> requires compiling in C++14 mode");
|
||||
};
|
||||
#endif // overload_cast
|
||||
|
||||
NAMESPACE_BEGIN(detail)
|
||||
|
||||
// Adaptor for converting arbitrary container arguments into a vector; implicitly convertible from
|
||||
// any standard container (or C-style array) supporting std::begin/std::end, any singleton
|
||||
// arithmetic type (if T is arithmetic), or explicitly constructible from an iterator pair.
|
||||
template <typename T>
|
||||
class any_container {
|
||||
std::vector<T> v;
|
||||
public:
|
||||
any_container() = default;
|
||||
|
||||
// Can construct from a pair of iterators
|
||||
template <typename It, typename = enable_if_t<is_input_iterator<It>::value>>
|
||||
any_container(It first, It last) : v(first, last) { }
|
||||
|
||||
// Implicit conversion constructor from any arbitrary container type with values convertible to T
|
||||
template <typename Container, typename = enable_if_t<std::is_convertible<decltype(*std::begin(std::declval<const Container &>())), T>::value>>
|
||||
any_container(const Container &c) : any_container(std::begin(c), std::end(c)) { }
|
||||
|
||||
// initializer_list's aren't deducible, so don't get matched by the above template; we need this
|
||||
// to explicitly allow implicit conversion from one:
|
||||
template <typename TIn, typename = enable_if_t<std::is_convertible<TIn, T>::value>>
|
||||
any_container(const std::initializer_list<TIn> &c) : any_container(c.begin(), c.end()) { }
|
||||
|
||||
// Avoid copying if given an rvalue vector of the correct type.
|
||||
any_container(std::vector<T> &&v) : v(std::move(v)) { }
|
||||
|
||||
// Moves the vector out of an rvalue any_container
|
||||
operator std::vector<T> &&() && { return std::move(v); }
|
||||
|
||||
// Dereferencing obtains a reference to the underlying vector
|
||||
std::vector<T> &operator*() { return v; }
|
||||
const std::vector<T> &operator*() const { return v; }
|
||||
|
||||
// -> lets you call methods on the underlying vector
|
||||
std::vector<T> *operator->() { return &v; }
|
||||
const std::vector<T> *operator->() const { return &v; }
|
||||
};
|
||||
|
||||
NAMESPACE_END(detail)
|
||||
|
||||
|
||||
|
||||
NAMESPACE_END(PYBIND11_NAMESPACE)
|
100
python/src/pybind11/detail/descr.h
Normal file
100
python/src/pybind11/detail/descr.h
Normal file
@@ -0,0 +1,100 @@
|
||||
/*
|
||||
pybind11/detail/descr.h: Helper type for concatenating type signatures at compile time
|
||||
|
||||
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
|
||||
|
||||
All rights reserved. Use of this source code is governed by a
|
||||
BSD-style license that can be found in the LICENSE file.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common.h"
|
||||
|
||||
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
|
||||
NAMESPACE_BEGIN(detail)
|
||||
|
||||
#if !defined(_MSC_VER)
|
||||
# define PYBIND11_DESCR_CONSTEXPR static constexpr
|
||||
#else
|
||||
# define PYBIND11_DESCR_CONSTEXPR const
|
||||
#endif
|
||||
|
||||
/* Concatenate type signatures at compile time */
|
||||
template <size_t N, typename... Ts>
|
||||
struct descr {
|
||||
char text[N + 1];
|
||||
|
||||
constexpr descr() : text{'\0'} { }
|
||||
constexpr descr(char const (&s)[N+1]) : descr(s, make_index_sequence<N>()) { }
|
||||
|
||||
template <size_t... Is>
|
||||
constexpr descr(char const (&s)[N+1], index_sequence<Is...>) : text{s[Is]..., '\0'} { }
|
||||
|
||||
template <typename... Chars>
|
||||
constexpr descr(char c, Chars... cs) : text{c, static_cast<char>(cs)..., '\0'} { }
|
||||
|
||||
static constexpr std::array<const std::type_info *, sizeof...(Ts) + 1> types() {
|
||||
return {{&typeid(Ts)..., nullptr}};
|
||||
}
|
||||
};
|
||||
|
||||
template <size_t N1, size_t N2, typename... Ts1, typename... Ts2, size_t... Is1, size_t... Is2>
|
||||
constexpr descr<N1 + N2, Ts1..., Ts2...> plus_impl(const descr<N1, Ts1...> &a, const descr<N2, Ts2...> &b,
|
||||
index_sequence<Is1...>, index_sequence<Is2...>) {
|
||||
return {a.text[Is1]..., b.text[Is2]...};
|
||||
}
|
||||
|
||||
template <size_t N1, size_t N2, typename... Ts1, typename... Ts2>
|
||||
constexpr descr<N1 + N2, Ts1..., Ts2...> operator+(const descr<N1, Ts1...> &a, const descr<N2, Ts2...> &b) {
|
||||
return plus_impl(a, b, make_index_sequence<N1>(), make_index_sequence<N2>());
|
||||
}
|
||||
|
||||
template <size_t N>
|
||||
constexpr descr<N - 1> _(char const(&text)[N]) { return descr<N - 1>(text); }
|
||||
constexpr descr<0> _(char const(&)[1]) { return {}; }
|
||||
|
||||
template <size_t Rem, size_t... Digits> struct int_to_str : int_to_str<Rem/10, Rem%10, Digits...> { };
|
||||
template <size_t...Digits> struct int_to_str<0, Digits...> {
|
||||
static constexpr auto digits = descr<sizeof...(Digits)>(('0' + Digits)...);
|
||||
};
|
||||
|
||||
// Ternary description (like std::conditional)
|
||||
template <bool B, size_t N1, size_t N2>
|
||||
constexpr enable_if_t<B, descr<N1 - 1>> _(char const(&text1)[N1], char const(&)[N2]) {
|
||||
return _(text1);
|
||||
}
|
||||
template <bool B, size_t N1, size_t N2>
|
||||
constexpr enable_if_t<!B, descr<N2 - 1>> _(char const(&)[N1], char const(&text2)[N2]) {
|
||||
return _(text2);
|
||||
}
|
||||
|
||||
template <bool B, typename T1, typename T2>
|
||||
constexpr enable_if_t<B, T1> _(const T1 &d, const T2 &) { return d; }
|
||||
template <bool B, typename T1, typename T2>
|
||||
constexpr enable_if_t<!B, T2> _(const T1 &, const T2 &d) { return d; }
|
||||
|
||||
template <size_t Size> auto constexpr _() -> decltype(int_to_str<Size / 10, Size % 10>::digits) {
|
||||
return int_to_str<Size / 10, Size % 10>::digits;
|
||||
}
|
||||
|
||||
template <typename Type> constexpr descr<1, Type> _() { return {'%'}; }
|
||||
|
||||
constexpr descr<0> concat() { return {}; }
|
||||
|
||||
template <size_t N, typename... Ts>
|
||||
constexpr descr<N, Ts...> concat(const descr<N, Ts...> &descr) { return descr; }
|
||||
|
||||
template <size_t N, typename... Ts, typename... Args>
|
||||
constexpr auto concat(const descr<N, Ts...> &d, const Args &...args)
|
||||
-> decltype(std::declval<descr<N + 2, Ts...>>() + concat(args...)) {
|
||||
return d + _(", ") + concat(args...);
|
||||
}
|
||||
|
||||
template <size_t N, typename... Ts>
|
||||
constexpr descr<N + 2, Ts...> type_descr(const descr<N, Ts...> &descr) {
|
||||
return _("{") + descr + _("}");
|
||||
}
|
||||
|
||||
NAMESPACE_END(detail)
|
||||
NAMESPACE_END(PYBIND11_NAMESPACE)
|
335
python/src/pybind11/detail/init.h
Normal file
335
python/src/pybind11/detail/init.h
Normal file
@@ -0,0 +1,335 @@
|
||||
/*
|
||||
pybind11/detail/init.h: init factory function implementation and support code.
|
||||
|
||||
Copyright (c) 2017 Jason Rhinelander <jason@imaginary.ca>
|
||||
|
||||
All rights reserved. Use of this source code is governed by a
|
||||
BSD-style license that can be found in the LICENSE file.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "class.h"
|
||||
|
||||
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
|
||||
NAMESPACE_BEGIN(detail)
|
||||
|
||||
template <>
|
||||
class type_caster<value_and_holder> {
|
||||
public:
|
||||
bool load(handle h, bool) {
|
||||
value = reinterpret_cast<value_and_holder *>(h.ptr());
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename> using cast_op_type = value_and_holder &;
|
||||
operator value_and_holder &() { return *value; }
|
||||
static constexpr auto name = _<value_and_holder>();
|
||||
|
||||
private:
|
||||
value_and_holder *value = nullptr;
|
||||
};
|
||||
|
||||
NAMESPACE_BEGIN(initimpl)
|
||||
|
||||
inline void no_nullptr(void *ptr) {
|
||||
if (!ptr) throw type_error("pybind11::init(): factory function returned nullptr");
|
||||
}
|
||||
|
||||
// Implementing functions for all forms of py::init<...> and py::init(...)
|
||||
template <typename Class> using Cpp = typename Class::type;
|
||||
template <typename Class> using Alias = typename Class::type_alias;
|
||||
template <typename Class> using Holder = typename Class::holder_type;
|
||||
|
||||
template <typename Class> using is_alias_constructible = std::is_constructible<Alias<Class>, Cpp<Class> &&>;
|
||||
|
||||
// Takes a Cpp pointer and returns true if it actually is a polymorphic Alias instance.
|
||||
template <typename Class, enable_if_t<Class::has_alias, int> = 0>
|
||||
bool is_alias(Cpp<Class> *ptr) {
|
||||
return dynamic_cast<Alias<Class> *>(ptr) != nullptr;
|
||||
}
|
||||
// Failing fallback version of the above for a no-alias class (always returns false)
|
||||
template <typename /*Class*/>
|
||||
constexpr bool is_alias(void *) { return false; }
|
||||
|
||||
// Constructs and returns a new object; if the given arguments don't map to a constructor, we fall
|
||||
// back to brace aggregate initiailization so that for aggregate initialization can be used with
|
||||
// py::init, e.g. `py::init<int, int>` to initialize a `struct T { int a; int b; }`. For
|
||||
// non-aggregate types, we need to use an ordinary T(...) constructor (invoking as `T{...}` usually
|
||||
// works, but will not do the expected thing when `T` has an `initializer_list<T>` constructor).
|
||||
template <typename Class, typename... Args, detail::enable_if_t<std::is_constructible<Class, Args...>::value, int> = 0>
|
||||
inline Class *construct_or_initialize(Args &&...args) { return new Class(std::forward<Args>(args)...); }
|
||||
template <typename Class, typename... Args, detail::enable_if_t<!std::is_constructible<Class, Args...>::value, int> = 0>
|
||||
inline Class *construct_or_initialize(Args &&...args) { return new Class{std::forward<Args>(args)...}; }
|
||||
|
||||
// Attempts to constructs an alias using a `Alias(Cpp &&)` constructor. This allows types with
|
||||
// an alias to provide only a single Cpp factory function as long as the Alias can be
|
||||
// constructed from an rvalue reference of the base Cpp type. This means that Alias classes
|
||||
// can, when appropriate, simply define a `Alias(Cpp &&)` constructor rather than needing to
|
||||
// inherit all the base class constructors.
|
||||
template <typename Class>
|
||||
void construct_alias_from_cpp(std::true_type /*is_alias_constructible*/,
|
||||
value_and_holder &v_h, Cpp<Class> &&base) {
|
||||
v_h.value_ptr() = new Alias<Class>(std::move(base));
|
||||
}
|
||||
template <typename Class>
|
||||
[[noreturn]] void construct_alias_from_cpp(std::false_type /*!is_alias_constructible*/,
|
||||
value_and_holder &, Cpp<Class> &&) {
|
||||
throw type_error("pybind11::init(): unable to convert returned instance to required "
|
||||
"alias class: no `Alias<Class>(Class &&)` constructor available");
|
||||
}
|
||||
|
||||
// Error-generating fallback for factories that don't match one of the below construction
|
||||
// mechanisms.
|
||||
template <typename Class>
|
||||
void construct(...) {
|
||||
static_assert(!std::is_same<Class, Class>::value /* always false */,
|
||||
"pybind11::init(): init function must return a compatible pointer, "
|
||||
"holder, or value");
|
||||
}
|
||||
|
||||
// Pointer return v1: the factory function returns a class pointer for a registered class.
|
||||
// If we don't need an alias (because this class doesn't have one, or because the final type is
|
||||
// inherited on the Python side) we can simply take over ownership. Otherwise we need to try to
|
||||
// construct an Alias from the returned base instance.
|
||||
template <typename Class>
|
||||
void construct(value_and_holder &v_h, Cpp<Class> *ptr, bool need_alias) {
|
||||
no_nullptr(ptr);
|
||||
if (Class::has_alias && need_alias && !is_alias<Class>(ptr)) {
|
||||
// We're going to try to construct an alias by moving the cpp type. Whether or not
|
||||
// that succeeds, we still need to destroy the original cpp pointer (either the
|
||||
// moved away leftover, if the alias construction works, or the value itself if we
|
||||
// throw an error), but we can't just call `delete ptr`: it might have a special
|
||||
// deleter, or might be shared_from_this. So we construct a holder around it as if
|
||||
// it was a normal instance, then steal the holder away into a local variable; thus
|
||||
// the holder and destruction happens when we leave the C++ scope, and the holder
|
||||
// class gets to handle the destruction however it likes.
|
||||
v_h.value_ptr() = ptr;
|
||||
v_h.set_instance_registered(true); // To prevent init_instance from registering it
|
||||
v_h.type->init_instance(v_h.inst, nullptr); // Set up the holder
|
||||
Holder<Class> temp_holder(std::move(v_h.holder<Holder<Class>>())); // Steal the holder
|
||||
v_h.type->dealloc(v_h); // Destroys the moved-out holder remains, resets value ptr to null
|
||||
v_h.set_instance_registered(false);
|
||||
|
||||
construct_alias_from_cpp<Class>(is_alias_constructible<Class>{}, v_h, std::move(*ptr));
|
||||
} else {
|
||||
// Otherwise the type isn't inherited, so we don't need an Alias
|
||||
v_h.value_ptr() = ptr;
|
||||
}
|
||||
}
|
||||
|
||||
// Pointer return v2: a factory that always returns an alias instance ptr. We simply take over
|
||||
// ownership of the pointer.
|
||||
template <typename Class, enable_if_t<Class::has_alias, int> = 0>
|
||||
void construct(value_and_holder &v_h, Alias<Class> *alias_ptr, bool) {
|
||||
no_nullptr(alias_ptr);
|
||||
v_h.value_ptr() = static_cast<Cpp<Class> *>(alias_ptr);
|
||||
}
|
||||
|
||||
// Holder return: copy its pointer, and move or copy the returned holder into the new instance's
|
||||
// holder. This also handles types like std::shared_ptr<T> and std::unique_ptr<T> where T is a
|
||||
// derived type (through those holder's implicit conversion from derived class holder constructors).
|
||||
template <typename Class>
|
||||
void construct(value_and_holder &v_h, Holder<Class> holder, bool need_alias) {
|
||||
auto *ptr = holder_helper<Holder<Class>>::get(holder);
|
||||
// If we need an alias, check that the held pointer is actually an alias instance
|
||||
if (Class::has_alias && need_alias && !is_alias<Class>(ptr))
|
||||
throw type_error("pybind11::init(): construction failed: returned holder-wrapped instance "
|
||||
"is not an alias instance");
|
||||
|
||||
v_h.value_ptr() = ptr;
|
||||
v_h.type->init_instance(v_h.inst, &holder);
|
||||
}
|
||||
|
||||
// return-by-value version 1: returning a cpp class by value. If the class has an alias and an
|
||||
// alias is required the alias must have an `Alias(Cpp &&)` constructor so that we can construct
|
||||
// the alias from the base when needed (i.e. because of Python-side inheritance). When we don't
|
||||
// need it, we simply move-construct the cpp value into a new instance.
|
||||
template <typename Class>
|
||||
void construct(value_and_holder &v_h, Cpp<Class> &&result, bool need_alias) {
|
||||
static_assert(std::is_move_constructible<Cpp<Class>>::value,
|
||||
"pybind11::init() return-by-value factory function requires a movable class");
|
||||
if (Class::has_alias && need_alias)
|
||||
construct_alias_from_cpp<Class>(is_alias_constructible<Class>{}, v_h, std::move(result));
|
||||
else
|
||||
v_h.value_ptr() = new Cpp<Class>(std::move(result));
|
||||
}
|
||||
|
||||
// return-by-value version 2: returning a value of the alias type itself. We move-construct an
|
||||
// Alias instance (even if no the python-side inheritance is involved). The is intended for
|
||||
// cases where Alias initialization is always desired.
|
||||
template <typename Class>
|
||||
void construct(value_and_holder &v_h, Alias<Class> &&result, bool) {
|
||||
static_assert(std::is_move_constructible<Alias<Class>>::value,
|
||||
"pybind11::init() return-by-alias-value factory function requires a movable alias class");
|
||||
v_h.value_ptr() = new Alias<Class>(std::move(result));
|
||||
}
|
||||
|
||||
// Implementing class for py::init<...>()
|
||||
template <typename... Args>
|
||||
struct constructor {
|
||||
template <typename Class, typename... Extra, enable_if_t<!Class::has_alias, int> = 0>
|
||||
static void execute(Class &cl, const Extra&... extra) {
|
||||
cl.def("__init__", [](value_and_holder &v_h, Args... args) {
|
||||
v_h.value_ptr() = construct_or_initialize<Cpp<Class>>(std::forward<Args>(args)...);
|
||||
}, is_new_style_constructor(), extra...);
|
||||
}
|
||||
|
||||
template <typename Class, typename... Extra,
|
||||
enable_if_t<Class::has_alias &&
|
||||
std::is_constructible<Cpp<Class>, Args...>::value, int> = 0>
|
||||
static void execute(Class &cl, const Extra&... extra) {
|
||||
cl.def("__init__", [](value_and_holder &v_h, Args... args) {
|
||||
if (Py_TYPE(v_h.inst) == v_h.type->type)
|
||||
v_h.value_ptr() = construct_or_initialize<Cpp<Class>>(std::forward<Args>(args)...);
|
||||
else
|
||||
v_h.value_ptr() = construct_or_initialize<Alias<Class>>(std::forward<Args>(args)...);
|
||||
}, is_new_style_constructor(), extra...);
|
||||
}
|
||||
|
||||
template <typename Class, typename... Extra,
|
||||
enable_if_t<Class::has_alias &&
|
||||
!std::is_constructible<Cpp<Class>, Args...>::value, int> = 0>
|
||||
static void execute(Class &cl, const Extra&... extra) {
|
||||
cl.def("__init__", [](value_and_holder &v_h, Args... args) {
|
||||
v_h.value_ptr() = construct_or_initialize<Alias<Class>>(std::forward<Args>(args)...);
|
||||
}, is_new_style_constructor(), extra...);
|
||||
}
|
||||
};
|
||||
|
||||
// Implementing class for py::init_alias<...>()
|
||||
template <typename... Args> struct alias_constructor {
|
||||
template <typename Class, typename... Extra,
|
||||
enable_if_t<Class::has_alias && std::is_constructible<Alias<Class>, Args...>::value, int> = 0>
|
||||
static void execute(Class &cl, const Extra&... extra) {
|
||||
cl.def("__init__", [](value_and_holder &v_h, Args... args) {
|
||||
v_h.value_ptr() = construct_or_initialize<Alias<Class>>(std::forward<Args>(args)...);
|
||||
}, is_new_style_constructor(), extra...);
|
||||
}
|
||||
};
|
||||
|
||||
// Implementation class for py::init(Func) and py::init(Func, AliasFunc)
|
||||
template <typename CFunc, typename AFunc = void_type (*)(),
|
||||
typename = function_signature_t<CFunc>, typename = function_signature_t<AFunc>>
|
||||
struct factory;
|
||||
|
||||
// Specialization for py::init(Func)
|
||||
template <typename Func, typename Return, typename... Args>
|
||||
struct factory<Func, void_type (*)(), Return(Args...)> {
|
||||
remove_reference_t<Func> class_factory;
|
||||
|
||||
factory(Func &&f) : class_factory(std::forward<Func>(f)) { }
|
||||
|
||||
// The given class either has no alias or has no separate alias factory;
|
||||
// this always constructs the class itself. If the class is registered with an alias
|
||||
// type and an alias instance is needed (i.e. because the final type is a Python class
|
||||
// inheriting from the C++ type) the returned value needs to either already be an alias
|
||||
// instance, or the alias needs to be constructible from a `Class &&` argument.
|
||||
template <typename Class, typename... Extra>
|
||||
void execute(Class &cl, const Extra &...extra) && {
|
||||
#if defined(PYBIND11_CPP14)
|
||||
cl.def("__init__", [func = std::move(class_factory)]
|
||||
#else
|
||||
auto &func = class_factory;
|
||||
cl.def("__init__", [func]
|
||||
#endif
|
||||
(value_and_holder &v_h, Args... args) {
|
||||
construct<Class>(v_h, func(std::forward<Args>(args)...),
|
||||
Py_TYPE(v_h.inst) != v_h.type->type);
|
||||
}, is_new_style_constructor(), extra...);
|
||||
}
|
||||
};
|
||||
|
||||
// Specialization for py::init(Func, AliasFunc)
|
||||
template <typename CFunc, typename AFunc,
|
||||
typename CReturn, typename... CArgs, typename AReturn, typename... AArgs>
|
||||
struct factory<CFunc, AFunc, CReturn(CArgs...), AReturn(AArgs...)> {
|
||||
static_assert(sizeof...(CArgs) == sizeof...(AArgs),
|
||||
"pybind11::init(class_factory, alias_factory): class and alias factories "
|
||||
"must have identical argument signatures");
|
||||
static_assert(all_of<std::is_same<CArgs, AArgs>...>::value,
|
||||
"pybind11::init(class_factory, alias_factory): class and alias factories "
|
||||
"must have identical argument signatures");
|
||||
|
||||
remove_reference_t<CFunc> class_factory;
|
||||
remove_reference_t<AFunc> alias_factory;
|
||||
|
||||
factory(CFunc &&c, AFunc &&a)
|
||||
: class_factory(std::forward<CFunc>(c)), alias_factory(std::forward<AFunc>(a)) { }
|
||||
|
||||
// The class factory is called when the `self` type passed to `__init__` is the direct
|
||||
// class (i.e. not inherited), the alias factory when `self` is a Python-side subtype.
|
||||
template <typename Class, typename... Extra>
|
||||
void execute(Class &cl, const Extra&... extra) && {
|
||||
static_assert(Class::has_alias, "The two-argument version of `py::init()` can "
|
||||
"only be used if the class has an alias");
|
||||
#if defined(PYBIND11_CPP14)
|
||||
cl.def("__init__", [class_func = std::move(class_factory), alias_func = std::move(alias_factory)]
|
||||
#else
|
||||
auto &class_func = class_factory;
|
||||
auto &alias_func = alias_factory;
|
||||
cl.def("__init__", [class_func, alias_func]
|
||||
#endif
|
||||
(value_and_holder &v_h, CArgs... args) {
|
||||
if (Py_TYPE(v_h.inst) == v_h.type->type)
|
||||
// If the instance type equals the registered type we don't have inheritance, so
|
||||
// don't need the alias and can construct using the class function:
|
||||
construct<Class>(v_h, class_func(std::forward<CArgs>(args)...), false);
|
||||
else
|
||||
construct<Class>(v_h, alias_func(std::forward<CArgs>(args)...), true);
|
||||
}, is_new_style_constructor(), extra...);
|
||||
}
|
||||
};
|
||||
|
||||
/// Set just the C++ state. Same as `__init__`.
|
||||
template <typename Class, typename T>
|
||||
void setstate(value_and_holder &v_h, T &&result, bool need_alias) {
|
||||
construct<Class>(v_h, std::forward<T>(result), need_alias);
|
||||
}
|
||||
|
||||
/// Set both the C++ and Python states
|
||||
template <typename Class, typename T, typename O,
|
||||
enable_if_t<std::is_convertible<O, handle>::value, int> = 0>
|
||||
void setstate(value_and_holder &v_h, std::pair<T, O> &&result, bool need_alias) {
|
||||
construct<Class>(v_h, std::move(result.first), need_alias);
|
||||
setattr((PyObject *) v_h.inst, "__dict__", result.second);
|
||||
}
|
||||
|
||||
/// Implementation for py::pickle(GetState, SetState)
|
||||
template <typename Get, typename Set,
|
||||
typename = function_signature_t<Get>, typename = function_signature_t<Set>>
|
||||
struct pickle_factory;
|
||||
|
||||
template <typename Get, typename Set,
|
||||
typename RetState, typename Self, typename NewInstance, typename ArgState>
|
||||
struct pickle_factory<Get, Set, RetState(Self), NewInstance(ArgState)> {
|
||||
static_assert(std::is_same<intrinsic_t<RetState>, intrinsic_t<ArgState>>::value,
|
||||
"The type returned by `__getstate__` must be the same "
|
||||
"as the argument accepted by `__setstate__`");
|
||||
|
||||
remove_reference_t<Get> get;
|
||||
remove_reference_t<Set> set;
|
||||
|
||||
pickle_factory(Get get, Set set)
|
||||
: get(std::forward<Get>(get)), set(std::forward<Set>(set)) { }
|
||||
|
||||
template <typename Class, typename... Extra>
|
||||
void execute(Class &cl, const Extra &...extra) && {
|
||||
cl.def("__getstate__", std::move(get));
|
||||
|
||||
#if defined(PYBIND11_CPP14)
|
||||
cl.def("__setstate__", [func = std::move(set)]
|
||||
#else
|
||||
auto &func = set;
|
||||
cl.def("__setstate__", [func]
|
||||
#endif
|
||||
(value_and_holder &v_h, ArgState state) {
|
||||
setstate<Class>(v_h, func(std::forward<ArgState>(state)),
|
||||
Py_TYPE(v_h.inst) != v_h.type->type);
|
||||
}, is_new_style_constructor(), extra...);
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(initimpl)
|
||||
NAMESPACE_END(detail)
|
||||
NAMESPACE_END(pybind11)
|
291
python/src/pybind11/detail/internals.h
Normal file
291
python/src/pybind11/detail/internals.h
Normal file
@@ -0,0 +1,291 @@
|
||||
/*
|
||||
pybind11/detail/internals.h: Internal data structure and related functions
|
||||
|
||||
Copyright (c) 2017 Wenzel Jakob <wenzel.jakob@epfl.ch>
|
||||
|
||||
All rights reserved. Use of this source code is governed by a
|
||||
BSD-style license that can be found in the LICENSE file.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "../pytypes.h"
|
||||
|
||||
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
|
||||
NAMESPACE_BEGIN(detail)
|
||||
// Forward declarations
|
||||
inline PyTypeObject *make_static_property_type();
|
||||
inline PyTypeObject *make_default_metaclass();
|
||||
inline PyObject *make_object_base_type(PyTypeObject *metaclass);
|
||||
|
||||
// The old Python Thread Local Storage (TLS) API is deprecated in Python 3.7 in favor of the new
|
||||
// Thread Specific Storage (TSS) API.
|
||||
#if PY_VERSION_HEX >= 0x03070000
|
||||
# define PYBIND11_TLS_KEY_INIT(var) Py_tss_t *var = nullptr
|
||||
# define PYBIND11_TLS_GET_VALUE(key) PyThread_tss_get((key))
|
||||
# define PYBIND11_TLS_REPLACE_VALUE(key, value) PyThread_tss_set((key), (value))
|
||||
# define PYBIND11_TLS_DELETE_VALUE(key) PyThread_tss_set((key), nullptr)
|
||||
#else
|
||||
// Usually an int but a long on Cygwin64 with Python 3.x
|
||||
# define PYBIND11_TLS_KEY_INIT(var) decltype(PyThread_create_key()) var = 0
|
||||
# define PYBIND11_TLS_GET_VALUE(key) PyThread_get_key_value((key))
|
||||
# if PY_MAJOR_VERSION < 3
|
||||
# define PYBIND11_TLS_DELETE_VALUE(key) \
|
||||
PyThread_delete_key_value(key)
|
||||
# define PYBIND11_TLS_REPLACE_VALUE(key, value) \
|
||||
do { \
|
||||
PyThread_delete_key_value((key)); \
|
||||
PyThread_set_key_value((key), (value)); \
|
||||
} while (false)
|
||||
# else
|
||||
# define PYBIND11_TLS_DELETE_VALUE(key) \
|
||||
PyThread_set_key_value((key), nullptr)
|
||||
# define PYBIND11_TLS_REPLACE_VALUE(key, value) \
|
||||
PyThread_set_key_value((key), (value))
|
||||
# endif
|
||||
#endif
|
||||
|
||||
// Python loads modules by default with dlopen with the RTLD_LOCAL flag; under libc++ and possibly
|
||||
// other STLs, this means `typeid(A)` from one module won't equal `typeid(A)` from another module
|
||||
// even when `A` is the same, non-hidden-visibility type (e.g. from a common include). Under
|
||||
// libstdc++, this doesn't happen: equality and the type_index hash are based on the type name,
|
||||
// which works. If not under a known-good stl, provide our own name-based hash and equality
|
||||
// functions that use the type name.
|
||||
#if defined(__GLIBCXX__)
|
||||
inline bool same_type(const std::type_info &lhs, const std::type_info &rhs) { return lhs == rhs; }
|
||||
using type_hash = std::hash<std::type_index>;
|
||||
using type_equal_to = std::equal_to<std::type_index>;
|
||||
#else
|
||||
inline bool same_type(const std::type_info &lhs, const std::type_info &rhs) {
|
||||
return lhs.name() == rhs.name() || std::strcmp(lhs.name(), rhs.name()) == 0;
|
||||
}
|
||||
|
||||
struct type_hash {
|
||||
size_t operator()(const std::type_index &t) const {
|
||||
size_t hash = 5381;
|
||||
const char *ptr = t.name();
|
||||
while (auto c = static_cast<unsigned char>(*ptr++))
|
||||
hash = (hash * 33) ^ c;
|
||||
return hash;
|
||||
}
|
||||
};
|
||||
|
||||
struct type_equal_to {
|
||||
bool operator()(const std::type_index &lhs, const std::type_index &rhs) const {
|
||||
return lhs.name() == rhs.name() || std::strcmp(lhs.name(), rhs.name()) == 0;
|
||||
}
|
||||
};
|
||||
#endif
|
||||
|
||||
template <typename value_type>
|
||||
using type_map = std::unordered_map<std::type_index, value_type, type_hash, type_equal_to>;
|
||||
|
||||
struct overload_hash {
|
||||
inline size_t operator()(const std::pair<const PyObject *, const char *>& v) const {
|
||||
size_t value = std::hash<const void *>()(v.first);
|
||||
value ^= std::hash<const void *>()(v.second) + 0x9e3779b9 + (value<<6) + (value>>2);
|
||||
return value;
|
||||
}
|
||||
};
|
||||
|
||||
/// Internal data structure used to track registered instances and types.
|
||||
/// Whenever binary incompatible changes are made to this structure,
|
||||
/// `PYBIND11_INTERNALS_VERSION` must be incremented.
|
||||
struct internals {
|
||||
type_map<type_info *> registered_types_cpp; // std::type_index -> pybind11's type information
|
||||
std::unordered_map<PyTypeObject *, std::vector<type_info *>> registered_types_py; // PyTypeObject* -> base type_info(s)
|
||||
std::unordered_multimap<const void *, instance*> registered_instances; // void * -> instance*
|
||||
std::unordered_set<std::pair<const PyObject *, const char *>, overload_hash> inactive_overload_cache;
|
||||
type_map<std::vector<bool (*)(PyObject *, void *&)>> direct_conversions;
|
||||
std::unordered_map<const PyObject *, std::vector<PyObject *>> patients;
|
||||
std::forward_list<void (*) (std::exception_ptr)> registered_exception_translators;
|
||||
std::unordered_map<std::string, void *> shared_data; // Custom data to be shared across extensions
|
||||
std::vector<PyObject *> loader_patient_stack; // Used by `loader_life_support`
|
||||
std::forward_list<std::string> static_strings; // Stores the std::strings backing detail::c_str()
|
||||
PyTypeObject *static_property_type;
|
||||
PyTypeObject *default_metaclass;
|
||||
PyObject *instance_base;
|
||||
#if defined(WITH_THREAD)
|
||||
PYBIND11_TLS_KEY_INIT(tstate);
|
||||
PyInterpreterState *istate = nullptr;
|
||||
#endif
|
||||
};
|
||||
|
||||
/// Additional type information which does not fit into the PyTypeObject.
|
||||
/// Changes to this struct also require bumping `PYBIND11_INTERNALS_VERSION`.
|
||||
struct type_info {
|
||||
PyTypeObject *type;
|
||||
const std::type_info *cpptype;
|
||||
size_t type_size, type_align, holder_size_in_ptrs;
|
||||
void *(*operator_new)(size_t);
|
||||
void (*init_instance)(instance *, const void *);
|
||||
void (*dealloc)(value_and_holder &v_h);
|
||||
std::vector<PyObject *(*)(PyObject *, PyTypeObject *)> implicit_conversions;
|
||||
std::vector<std::pair<const std::type_info *, void *(*)(void *)>> implicit_casts;
|
||||
std::vector<bool (*)(PyObject *, void *&)> *direct_conversions;
|
||||
buffer_info *(*get_buffer)(PyObject *, void *) = nullptr;
|
||||
void *get_buffer_data = nullptr;
|
||||
void *(*module_local_load)(PyObject *, const type_info *) = nullptr;
|
||||
/* A simple type never occurs as a (direct or indirect) parent
|
||||
* of a class that makes use of multiple inheritance */
|
||||
bool simple_type : 1;
|
||||
/* True if there is no multiple inheritance in this type's inheritance tree */
|
||||
bool simple_ancestors : 1;
|
||||
/* for base vs derived holder_type checks */
|
||||
bool default_holder : 1;
|
||||
/* true if this is a type registered with py::module_local */
|
||||
bool module_local : 1;
|
||||
};
|
||||
|
||||
/// Tracks the `internals` and `type_info` ABI version independent of the main library version
|
||||
#define PYBIND11_INTERNALS_VERSION 3
|
||||
|
||||
#if defined(_DEBUG)
|
||||
# define PYBIND11_BUILD_TYPE "_debug"
|
||||
#else
|
||||
# define PYBIND11_BUILD_TYPE ""
|
||||
#endif
|
||||
|
||||
#if defined(WITH_THREAD)
|
||||
# define PYBIND11_INTERNALS_KIND ""
|
||||
#else
|
||||
# define PYBIND11_INTERNALS_KIND "_without_thread"
|
||||
#endif
|
||||
|
||||
#define PYBIND11_INTERNALS_ID "__pybind11_internals_v" \
|
||||
PYBIND11_TOSTRING(PYBIND11_INTERNALS_VERSION) PYBIND11_INTERNALS_KIND PYBIND11_BUILD_TYPE "__"
|
||||
|
||||
#define PYBIND11_MODULE_LOCAL_ID "__pybind11_module_local_v" \
|
||||
PYBIND11_TOSTRING(PYBIND11_INTERNALS_VERSION) PYBIND11_INTERNALS_KIND PYBIND11_BUILD_TYPE "__"
|
||||
|
||||
/// Each module locally stores a pointer to the `internals` data. The data
|
||||
/// itself is shared among modules with the same `PYBIND11_INTERNALS_ID`.
|
||||
inline internals **&get_internals_pp() {
|
||||
static internals **internals_pp = nullptr;
|
||||
return internals_pp;
|
||||
}
|
||||
|
||||
/// Return a reference to the current `internals` data
|
||||
PYBIND11_NOINLINE inline internals &get_internals() {
|
||||
auto **&internals_pp = get_internals_pp();
|
||||
if (internals_pp && *internals_pp)
|
||||
return **internals_pp;
|
||||
|
||||
constexpr auto *id = PYBIND11_INTERNALS_ID;
|
||||
auto builtins = handle(PyEval_GetBuiltins());
|
||||
if (builtins.contains(id) && isinstance<capsule>(builtins[id])) {
|
||||
internals_pp = static_cast<internals **>(capsule(builtins[id]));
|
||||
|
||||
// We loaded builtins through python's builtins, which means that our `error_already_set`
|
||||
// and `builtin_exception` may be different local classes than the ones set up in the
|
||||
// initial exception translator, below, so add another for our local exception classes.
|
||||
//
|
||||
// libstdc++ doesn't require this (types there are identified only by name)
|
||||
#if !defined(__GLIBCXX__)
|
||||
(*internals_pp)->registered_exception_translators.push_front(
|
||||
[](std::exception_ptr p) -> void {
|
||||
try {
|
||||
if (p) std::rethrow_exception(p);
|
||||
} catch (error_already_set &e) { e.restore(); return;
|
||||
} catch (const builtin_exception &e) { e.set_error(); return;
|
||||
}
|
||||
}
|
||||
);
|
||||
#endif
|
||||
} else {
|
||||
if (!internals_pp) internals_pp = new internals*();
|
||||
auto *&internals_ptr = *internals_pp;
|
||||
internals_ptr = new internals();
|
||||
#if defined(WITH_THREAD)
|
||||
PyEval_InitThreads();
|
||||
PyThreadState *tstate = PyThreadState_Get();
|
||||
#if PY_VERSION_HEX >= 0x03070000
|
||||
internals_ptr->tstate = PyThread_tss_alloc();
|
||||
if (!internals_ptr->tstate || PyThread_tss_create(internals_ptr->tstate))
|
||||
pybind11_fail("get_internals: could not successfully initialize the TSS key!");
|
||||
PyThread_tss_set(internals_ptr->tstate, tstate);
|
||||
#else
|
||||
internals_ptr->tstate = PyThread_create_key();
|
||||
if (internals_ptr->tstate == -1)
|
||||
pybind11_fail("get_internals: could not successfully initialize the TLS key!");
|
||||
PyThread_set_key_value(internals_ptr->tstate, tstate);
|
||||
#endif
|
||||
internals_ptr->istate = tstate->interp;
|
||||
#endif
|
||||
builtins[id] = capsule(internals_pp);
|
||||
internals_ptr->registered_exception_translators.push_front(
|
||||
[](std::exception_ptr p) -> void {
|
||||
try {
|
||||
if (p) std::rethrow_exception(p);
|
||||
} catch (error_already_set &e) { e.restore(); return;
|
||||
} catch (const builtin_exception &e) { e.set_error(); return;
|
||||
} catch (const std::bad_alloc &e) { PyErr_SetString(PyExc_MemoryError, e.what()); return;
|
||||
} catch (const std::domain_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
|
||||
} catch (const std::invalid_argument &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
|
||||
} catch (const std::length_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
|
||||
} catch (const std::out_of_range &e) { PyErr_SetString(PyExc_IndexError, e.what()); return;
|
||||
} catch (const std::range_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
|
||||
} catch (const std::exception &e) { PyErr_SetString(PyExc_RuntimeError, e.what()); return;
|
||||
} catch (...) {
|
||||
PyErr_SetString(PyExc_RuntimeError, "Caught an unknown exception!");
|
||||
return;
|
||||
}
|
||||
}
|
||||
);
|
||||
internals_ptr->static_property_type = make_static_property_type();
|
||||
internals_ptr->default_metaclass = make_default_metaclass();
|
||||
internals_ptr->instance_base = make_object_base_type(internals_ptr->default_metaclass);
|
||||
}
|
||||
return **internals_pp;
|
||||
}
|
||||
|
||||
/// Works like `internals.registered_types_cpp`, but for module-local registered types:
|
||||
inline type_map<type_info *> ®istered_local_types_cpp() {
|
||||
static type_map<type_info *> locals{};
|
||||
return locals;
|
||||
}
|
||||
|
||||
/// Constructs a std::string with the given arguments, stores it in `internals`, and returns its
|
||||
/// `c_str()`. Such strings objects have a long storage duration -- the internal strings are only
|
||||
/// cleared when the program exits or after interpreter shutdown (when embedding), and so are
|
||||
/// suitable for c-style strings needed by Python internals (such as PyTypeObject's tp_name).
|
||||
template <typename... Args>
|
||||
const char *c_str(Args &&...args) {
|
||||
auto &strings = get_internals().static_strings;
|
||||
strings.emplace_front(std::forward<Args>(args)...);
|
||||
return strings.front().c_str();
|
||||
}
|
||||
|
||||
NAMESPACE_END(detail)
|
||||
|
||||
/// Returns a named pointer that is shared among all extension modules (using the same
|
||||
/// pybind11 version) running in the current interpreter. Names starting with underscores
|
||||
/// are reserved for internal usage. Returns `nullptr` if no matching entry was found.
|
||||
inline PYBIND11_NOINLINE void *get_shared_data(const std::string &name) {
|
||||
auto &internals = detail::get_internals();
|
||||
auto it = internals.shared_data.find(name);
|
||||
return it != internals.shared_data.end() ? it->second : nullptr;
|
||||
}
|
||||
|
||||
/// Set the shared data that can be later recovered by `get_shared_data()`.
|
||||
inline PYBIND11_NOINLINE void *set_shared_data(const std::string &name, void *data) {
|
||||
detail::get_internals().shared_data[name] = data;
|
||||
return data;
|
||||
}
|
||||
|
||||
/// Returns a typed reference to a shared data entry (by using `get_shared_data()`) if
|
||||
/// such entry exists. Otherwise, a new object of default-constructible type `T` is
|
||||
/// added to the shared data under the given name and a reference to it is returned.
|
||||
template<typename T>
|
||||
T &get_or_create_shared_data(const std::string &name) {
|
||||
auto &internals = detail::get_internals();
|
||||
auto it = internals.shared_data.find(name);
|
||||
T *ptr = (T *) (it != internals.shared_data.end() ? it->second : nullptr);
|
||||
if (!ptr) {
|
||||
ptr = new T();
|
||||
internals.shared_data[name] = ptr;
|
||||
}
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
NAMESPACE_END(PYBIND11_NAMESPACE)
|
55
python/src/pybind11/detail/typeid.h
Normal file
55
python/src/pybind11/detail/typeid.h
Normal file
@@ -0,0 +1,55 @@
|
||||
/*
|
||||
pybind11/detail/typeid.h: Compiler-independent access to type identifiers
|
||||
|
||||
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
|
||||
|
||||
All rights reserved. Use of this source code is governed by a
|
||||
BSD-style license that can be found in the LICENSE file.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
|
||||
#if defined(__GNUG__)
|
||||
#include <cxxabi.h>
|
||||
#endif
|
||||
|
||||
#include "common.h"
|
||||
|
||||
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
|
||||
NAMESPACE_BEGIN(detail)
|
||||
/// Erase all occurrences of a substring
|
||||
inline void erase_all(std::string &string, const std::string &search) {
|
||||
for (size_t pos = 0;;) {
|
||||
pos = string.find(search, pos);
|
||||
if (pos == std::string::npos) break;
|
||||
string.erase(pos, search.length());
|
||||
}
|
||||
}
|
||||
|
||||
PYBIND11_NOINLINE inline void clean_type_id(std::string &name) {
|
||||
#if defined(__GNUG__)
|
||||
int status = 0;
|
||||
std::unique_ptr<char, void (*)(void *)> res {
|
||||
abi::__cxa_demangle(name.c_str(), nullptr, nullptr, &status), std::free };
|
||||
if (status == 0)
|
||||
name = res.get();
|
||||
#else
|
||||
detail::erase_all(name, "class ");
|
||||
detail::erase_all(name, "struct ");
|
||||
detail::erase_all(name, "enum ");
|
||||
#endif
|
||||
detail::erase_all(name, "pybind11::");
|
||||
}
|
||||
NAMESPACE_END(detail)
|
||||
|
||||
/// Return a string representation of a C++ type
|
||||
template <typename T> static std::string type_id() {
|
||||
std::string name(typeid(T).name());
|
||||
detail::clean_type_id(name);
|
||||
return name;
|
||||
}
|
||||
|
||||
NAMESPACE_END(PYBIND11_NAMESPACE)
|
607
python/src/pybind11/eigen.h
Normal file
607
python/src/pybind11/eigen.h
Normal file
@@ -0,0 +1,607 @@
|
||||
/*
|
||||
pybind11/eigen.h: Transparent conversion for dense and sparse Eigen matrices
|
||||
|
||||
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
|
||||
|
||||
All rights reserved. Use of this source code is governed by a
|
||||
BSD-style license that can be found in the LICENSE file.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "numpy.h"
|
||||
|
||||
#if defined(__INTEL_COMPILER)
|
||||
# pragma warning(disable: 1682) // implicit conversion of a 64-bit integral type to a smaller integral type (potential portability problem)
|
||||
#elif defined(__GNUG__) || defined(__clang__)
|
||||
# pragma GCC diagnostic push
|
||||
# pragma GCC diagnostic ignored "-Wconversion"
|
||||
# pragma GCC diagnostic ignored "-Wdeprecated-declarations"
|
||||
# ifdef __clang__
|
||||
// Eigen generates a bunch of implicit-copy-constructor-is-deprecated warnings with -Wdeprecated
|
||||
// under Clang, so disable that warning here:
|
||||
# pragma GCC diagnostic ignored "-Wdeprecated"
|
||||
# endif
|
||||
# if __GNUC__ >= 7
|
||||
# pragma GCC diagnostic ignored "-Wint-in-bool-context"
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
# pragma warning(push)
|
||||
# pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
|
||||
# pragma warning(disable: 4996) // warning C4996: std::unary_negate is deprecated in C++17
|
||||
#endif
|
||||
|
||||
#include <Eigen/Core>
|
||||
#include <Eigen/SparseCore>
|
||||
|
||||
// Eigen prior to 3.2.7 doesn't have proper move constructors--but worse, some classes get implicit
|
||||
// move constructors that break things. We could detect this an explicitly copy, but an extra copy
|
||||
// of matrices seems highly undesirable.
|
||||
static_assert(EIGEN_VERSION_AT_LEAST(3,2,7), "Eigen support in pybind11 requires Eigen >= 3.2.7");
|
||||
|
||||
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
|
||||
|
||||
// Provide a convenience alias for easier pass-by-ref usage with fully dynamic strides:
|
||||
using EigenDStride = Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic>;
|
||||
template <typename MatrixType> using EigenDRef = Eigen::Ref<MatrixType, 0, EigenDStride>;
|
||||
template <typename MatrixType> using EigenDMap = Eigen::Map<MatrixType, 0, EigenDStride>;
|
||||
|
||||
NAMESPACE_BEGIN(detail)
|
||||
|
||||
#if EIGEN_VERSION_AT_LEAST(3,3,0)
|
||||
using EigenIndex = Eigen::Index;
|
||||
#else
|
||||
using EigenIndex = EIGEN_DEFAULT_DENSE_INDEX_TYPE;
|
||||
#endif
|
||||
|
||||
// Matches Eigen::Map, Eigen::Ref, blocks, etc:
|
||||
template <typename T> using is_eigen_dense_map = all_of<is_template_base_of<Eigen::DenseBase, T>, std::is_base_of<Eigen::MapBase<T, Eigen::ReadOnlyAccessors>, T>>;
|
||||
template <typename T> using is_eigen_mutable_map = std::is_base_of<Eigen::MapBase<T, Eigen::WriteAccessors>, T>;
|
||||
template <typename T> using is_eigen_dense_plain = all_of<negation<is_eigen_dense_map<T>>, is_template_base_of<Eigen::PlainObjectBase, T>>;
|
||||
template <typename T> using is_eigen_sparse = is_template_base_of<Eigen::SparseMatrixBase, T>;
|
||||
// Test for objects inheriting from EigenBase<Derived> that aren't captured by the above. This
|
||||
// basically covers anything that can be assigned to a dense matrix but that don't have a typical
|
||||
// matrix data layout that can be copied from their .data(). For example, DiagonalMatrix and
|
||||
// SelfAdjointView fall into this category.
|
||||
template <typename T> using is_eigen_other = all_of<
|
||||
is_template_base_of<Eigen::EigenBase, T>,
|
||||
negation<any_of<is_eigen_dense_map<T>, is_eigen_dense_plain<T>, is_eigen_sparse<T>>>
|
||||
>;
|
||||
|
||||
// Captures numpy/eigen conformability status (returned by EigenProps::conformable()):
|
||||
template <bool EigenRowMajor> struct EigenConformable {
|
||||
bool conformable = false;
|
||||
EigenIndex rows = 0, cols = 0;
|
||||
EigenDStride stride{0, 0}; // Only valid if negativestrides is false!
|
||||
bool negativestrides = false; // If true, do not use stride!
|
||||
|
||||
EigenConformable(bool fits = false) : conformable{fits} {}
|
||||
// Matrix type:
|
||||
EigenConformable(EigenIndex r, EigenIndex c,
|
||||
EigenIndex rstride, EigenIndex cstride) :
|
||||
conformable{true}, rows{r}, cols{c} {
|
||||
// TODO: when Eigen bug #747 is fixed, remove the tests for non-negativity. http://eigen.tuxfamily.org/bz/show_bug.cgi?id=747
|
||||
if (rstride < 0 || cstride < 0) {
|
||||
negativestrides = true;
|
||||
} else {
|
||||
stride = {EigenRowMajor ? rstride : cstride /* outer stride */,
|
||||
EigenRowMajor ? cstride : rstride /* inner stride */ };
|
||||
}
|
||||
}
|
||||
// Vector type:
|
||||
EigenConformable(EigenIndex r, EigenIndex c, EigenIndex stride)
|
||||
: EigenConformable(r, c, r == 1 ? c*stride : stride, c == 1 ? r : r*stride) {}
|
||||
|
||||
template <typename props> bool stride_compatible() const {
|
||||
// To have compatible strides, we need (on both dimensions) one of fully dynamic strides,
|
||||
// matching strides, or a dimension size of 1 (in which case the stride value is irrelevant)
|
||||
return
|
||||
!negativestrides &&
|
||||
(props::inner_stride == Eigen::Dynamic || props::inner_stride == stride.inner() ||
|
||||
(EigenRowMajor ? cols : rows) == 1) &&
|
||||
(props::outer_stride == Eigen::Dynamic || props::outer_stride == stride.outer() ||
|
||||
(EigenRowMajor ? rows : cols) == 1);
|
||||
}
|
||||
operator bool() const { return conformable; }
|
||||
};
|
||||
|
||||
template <typename Type> struct eigen_extract_stride { using type = Type; };
|
||||
template <typename PlainObjectType, int MapOptions, typename StrideType>
|
||||
struct eigen_extract_stride<Eigen::Map<PlainObjectType, MapOptions, StrideType>> { using type = StrideType; };
|
||||
template <typename PlainObjectType, int Options, typename StrideType>
|
||||
struct eigen_extract_stride<Eigen::Ref<PlainObjectType, Options, StrideType>> { using type = StrideType; };
|
||||
|
||||
// Helper struct for extracting information from an Eigen type
|
||||
template <typename Type_> struct EigenProps {
|
||||
using Type = Type_;
|
||||
using Scalar = typename Type::Scalar;
|
||||
using StrideType = typename eigen_extract_stride<Type>::type;
|
||||
static constexpr EigenIndex
|
||||
rows = Type::RowsAtCompileTime,
|
||||
cols = Type::ColsAtCompileTime,
|
||||
size = Type::SizeAtCompileTime;
|
||||
static constexpr bool
|
||||
row_major = Type::IsRowMajor,
|
||||
vector = Type::IsVectorAtCompileTime, // At least one dimension has fixed size 1
|
||||
fixed_rows = rows != Eigen::Dynamic,
|
||||
fixed_cols = cols != Eigen::Dynamic,
|
||||
fixed = size != Eigen::Dynamic, // Fully-fixed size
|
||||
dynamic = !fixed_rows && !fixed_cols; // Fully-dynamic size
|
||||
|
||||
template <EigenIndex i, EigenIndex ifzero> using if_zero = std::integral_constant<EigenIndex, i == 0 ? ifzero : i>;
|
||||
static constexpr EigenIndex inner_stride = if_zero<StrideType::InnerStrideAtCompileTime, 1>::value,
|
||||
outer_stride = if_zero<StrideType::OuterStrideAtCompileTime,
|
||||
vector ? size : row_major ? cols : rows>::value;
|
||||
static constexpr bool dynamic_stride = inner_stride == Eigen::Dynamic && outer_stride == Eigen::Dynamic;
|
||||
static constexpr bool requires_row_major = !dynamic_stride && !vector && (row_major ? inner_stride : outer_stride) == 1;
|
||||
static constexpr bool requires_col_major = !dynamic_stride && !vector && (row_major ? outer_stride : inner_stride) == 1;
|
||||
|
||||
// Takes an input array and determines whether we can make it fit into the Eigen type. If
|
||||
// the array is a vector, we attempt to fit it into either an Eigen 1xN or Nx1 vector
|
||||
// (preferring the latter if it will fit in either, i.e. for a fully dynamic matrix type).
|
||||
static EigenConformable<row_major> conformable(const array &a) {
|
||||
const auto dims = a.ndim();
|
||||
if (dims < 1 || dims > 2)
|
||||
return false;
|
||||
|
||||
if (dims == 2) { // Matrix type: require exact match (or dynamic)
|
||||
|
||||
EigenIndex
|
||||
np_rows = a.shape(0),
|
||||
np_cols = a.shape(1),
|
||||
np_rstride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar)),
|
||||
np_cstride = a.strides(1) / static_cast<ssize_t>(sizeof(Scalar));
|
||||
if ((fixed_rows && np_rows != rows) || (fixed_cols && np_cols != cols))
|
||||
return false;
|
||||
|
||||
return {np_rows, np_cols, np_rstride, np_cstride};
|
||||
}
|
||||
|
||||
// Otherwise we're storing an n-vector. Only one of the strides will be used, but whichever
|
||||
// is used, we want the (single) numpy stride value.
|
||||
const EigenIndex n = a.shape(0),
|
||||
stride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar));
|
||||
|
||||
if (vector) { // Eigen type is a compile-time vector
|
||||
if (fixed && size != n)
|
||||
return false; // Vector size mismatch
|
||||
return {rows == 1 ? 1 : n, cols == 1 ? 1 : n, stride};
|
||||
}
|
||||
else if (fixed) {
|
||||
// The type has a fixed size, but is not a vector: abort
|
||||
return false;
|
||||
}
|
||||
else if (fixed_cols) {
|
||||
// Since this isn't a vector, cols must be != 1. We allow this only if it exactly
|
||||
// equals the number of elements (rows is Dynamic, and so 1 row is allowed).
|
||||
if (cols != n) return false;
|
||||
return {1, n, stride};
|
||||
}
|
||||
else {
|
||||
// Otherwise it's either fully dynamic, or column dynamic; both become a column vector
|
||||
if (fixed_rows && rows != n) return false;
|
||||
return {n, 1, stride};
|
||||
}
|
||||
}
|
||||
|
||||
static constexpr bool show_writeable = is_eigen_dense_map<Type>::value && is_eigen_mutable_map<Type>::value;
|
||||
static constexpr bool show_order = is_eigen_dense_map<Type>::value;
|
||||
static constexpr bool show_c_contiguous = show_order && requires_row_major;
|
||||
static constexpr bool show_f_contiguous = !show_c_contiguous && show_order && requires_col_major;
|
||||
|
||||
static constexpr auto descriptor =
|
||||
_("numpy.ndarray[") + npy_format_descriptor<Scalar>::name +
|
||||
_("[") + _<fixed_rows>(_<(size_t) rows>(), _("m")) +
|
||||
_(", ") + _<fixed_cols>(_<(size_t) cols>(), _("n")) +
|
||||
_("]") +
|
||||
// For a reference type (e.g. Ref<MatrixXd>) we have other constraints that might need to be
|
||||
// satisfied: writeable=True (for a mutable reference), and, depending on the map's stride
|
||||
// options, possibly f_contiguous or c_contiguous. We include them in the descriptor output
|
||||
// to provide some hint as to why a TypeError is occurring (otherwise it can be confusing to
|
||||
// see that a function accepts a 'numpy.ndarray[float64[3,2]]' and an error message that you
|
||||
// *gave* a numpy.ndarray of the right type and dimensions.
|
||||
_<show_writeable>(", flags.writeable", "") +
|
||||
_<show_c_contiguous>(", flags.c_contiguous", "") +
|
||||
_<show_f_contiguous>(", flags.f_contiguous", "") +
|
||||
_("]");
|
||||
};
|
||||
|
||||
// Casts an Eigen type to numpy array. If given a base, the numpy array references the src data,
|
||||
// otherwise it'll make a copy. writeable lets you turn off the writeable flag for the array.
|
||||
template <typename props> handle eigen_array_cast(typename props::Type const &src, handle base = handle(), bool writeable = true) {
|
||||
constexpr ssize_t elem_size = sizeof(typename props::Scalar);
|
||||
array a;
|
||||
if (props::vector)
|
||||
a = array({ src.size() }, { elem_size * src.innerStride() }, src.data(), base);
|
||||
else
|
||||
a = array({ src.rows(), src.cols() }, { elem_size * src.rowStride(), elem_size * src.colStride() },
|
||||
src.data(), base);
|
||||
|
||||
if (!writeable)
|
||||
array_proxy(a.ptr())->flags &= ~detail::npy_api::NPY_ARRAY_WRITEABLE_;
|
||||
|
||||
return a.release();
|
||||
}
|
||||
|
||||
// Takes an lvalue ref to some Eigen type and a (python) base object, creating a numpy array that
|
||||
// reference the Eigen object's data with `base` as the python-registered base class (if omitted,
|
||||
// the base will be set to None, and lifetime management is up to the caller). The numpy array is
|
||||
// non-writeable if the given type is const.
|
||||
template <typename props, typename Type>
|
||||
handle eigen_ref_array(Type &src, handle parent = none()) {
|
||||
// none here is to get past array's should-we-copy detection, which currently always
|
||||
// copies when there is no base. Setting the base to None should be harmless.
|
||||
return eigen_array_cast<props>(src, parent, !std::is_const<Type>::value);
|
||||
}
|
||||
|
||||
// Takes a pointer to some dense, plain Eigen type, builds a capsule around it, then returns a numpy
|
||||
// array that references the encapsulated data with a python-side reference to the capsule to tie
|
||||
// its destruction to that of any dependent python objects. Const-ness is determined by whether or
|
||||
// not the Type of the pointer given is const.
|
||||
template <typename props, typename Type, typename = enable_if_t<is_eigen_dense_plain<Type>::value>>
|
||||
handle eigen_encapsulate(Type *src) {
|
||||
capsule base(src, [](void *o) { delete static_cast<Type *>(o); });
|
||||
return eigen_ref_array<props>(*src, base);
|
||||
}
|
||||
|
||||
// Type caster for regular, dense matrix types (e.g. MatrixXd), but not maps/refs/etc. of dense
|
||||
// types.
|
||||
template<typename Type>
|
||||
struct type_caster<Type, enable_if_t<is_eigen_dense_plain<Type>::value>> {
|
||||
using Scalar = typename Type::Scalar;
|
||||
using props = EigenProps<Type>;
|
||||
|
||||
bool load(handle src, bool convert) {
|
||||
// If we're in no-convert mode, only load if given an array of the correct type
|
||||
if (!convert && !isinstance<array_t<Scalar>>(src))
|
||||
return false;
|
||||
|
||||
// Coerce into an array, but don't do type conversion yet; the copy below handles it.
|
||||
auto buf = array::ensure(src);
|
||||
|
||||
if (!buf)
|
||||
return false;
|
||||
|
||||
auto dims = buf.ndim();
|
||||
if (dims < 1 || dims > 2)
|
||||
return false;
|
||||
|
||||
auto fits = props::conformable(buf);
|
||||
if (!fits)
|
||||
return false;
|
||||
|
||||
// Allocate the new type, then build a numpy reference into it
|
||||
value = Type(fits.rows, fits.cols);
|
||||
auto ref = reinterpret_steal<array>(eigen_ref_array<props>(value));
|
||||
if (dims == 1) ref = ref.squeeze();
|
||||
else if (ref.ndim() == 1) buf = buf.squeeze();
|
||||
|
||||
int result = detail::npy_api::get().PyArray_CopyInto_(ref.ptr(), buf.ptr());
|
||||
|
||||
if (result < 0) { // Copy failed!
|
||||
PyErr_Clear();
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
// Cast implementation
|
||||
template <typename CType>
|
||||
static handle cast_impl(CType *src, return_value_policy policy, handle parent) {
|
||||
switch (policy) {
|
||||
case return_value_policy::take_ownership:
|
||||
case return_value_policy::automatic:
|
||||
return eigen_encapsulate<props>(src);
|
||||
case return_value_policy::move:
|
||||
return eigen_encapsulate<props>(new CType(std::move(*src)));
|
||||
case return_value_policy::copy:
|
||||
return eigen_array_cast<props>(*src);
|
||||
case return_value_policy::reference:
|
||||
case return_value_policy::automatic_reference:
|
||||
return eigen_ref_array<props>(*src);
|
||||
case return_value_policy::reference_internal:
|
||||
return eigen_ref_array<props>(*src, parent);
|
||||
default:
|
||||
throw cast_error("unhandled return_value_policy: should not happen!");
|
||||
};
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
// Normal returned non-reference, non-const value:
|
||||
static handle cast(Type &&src, return_value_policy /* policy */, handle parent) {
|
||||
return cast_impl(&src, return_value_policy::move, parent);
|
||||
}
|
||||
// If you return a non-reference const, we mark the numpy array readonly:
|
||||
static handle cast(const Type &&src, return_value_policy /* policy */, handle parent) {
|
||||
return cast_impl(&src, return_value_policy::move, parent);
|
||||
}
|
||||
// lvalue reference return; default (automatic) becomes copy
|
||||
static handle cast(Type &src, return_value_policy policy, handle parent) {
|
||||
if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference)
|
||||
policy = return_value_policy::copy;
|
||||
return cast_impl(&src, policy, parent);
|
||||
}
|
||||
// const lvalue reference return; default (automatic) becomes copy
|
||||
static handle cast(const Type &src, return_value_policy policy, handle parent) {
|
||||
if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference)
|
||||
policy = return_value_policy::copy;
|
||||
return cast(&src, policy, parent);
|
||||
}
|
||||
// non-const pointer return
|
||||
static handle cast(Type *src, return_value_policy policy, handle parent) {
|
||||
return cast_impl(src, policy, parent);
|
||||
}
|
||||
// const pointer return
|
||||
static handle cast(const Type *src, return_value_policy policy, handle parent) {
|
||||
return cast_impl(src, policy, parent);
|
||||
}
|
||||
|
||||
static constexpr auto name = props::descriptor;
|
||||
|
||||
operator Type*() { return &value; }
|
||||
operator Type&() { return value; }
|
||||
operator Type&&() && { return std::move(value); }
|
||||
template <typename T> using cast_op_type = movable_cast_op_type<T>;
|
||||
|
||||
private:
|
||||
Type value;
|
||||
};
|
||||
|
||||
// Base class for casting reference/map/block/etc. objects back to python.
|
||||
template <typename MapType> struct eigen_map_caster {
|
||||
private:
|
||||
using props = EigenProps<MapType>;
|
||||
|
||||
public:
|
||||
|
||||
// Directly referencing a ref/map's data is a bit dangerous (whatever the map/ref points to has
|
||||
// to stay around), but we'll allow it under the assumption that you know what you're doing (and
|
||||
// have an appropriate keep_alive in place). We return a numpy array pointing directly at the
|
||||
// ref's data (The numpy array ends up read-only if the ref was to a const matrix type.) Note
|
||||
// that this means you need to ensure you don't destroy the object in some other way (e.g. with
|
||||
// an appropriate keep_alive, or with a reference to a statically allocated matrix).
|
||||
static handle cast(const MapType &src, return_value_policy policy, handle parent) {
|
||||
switch (policy) {
|
||||
case return_value_policy::copy:
|
||||
return eigen_array_cast<props>(src);
|
||||
case return_value_policy::reference_internal:
|
||||
return eigen_array_cast<props>(src, parent, is_eigen_mutable_map<MapType>::value);
|
||||
case return_value_policy::reference:
|
||||
case return_value_policy::automatic:
|
||||
case return_value_policy::automatic_reference:
|
||||
return eigen_array_cast<props>(src, none(), is_eigen_mutable_map<MapType>::value);
|
||||
default:
|
||||
// move, take_ownership don't make any sense for a ref/map:
|
||||
pybind11_fail("Invalid return_value_policy for Eigen Map/Ref/Block type");
|
||||
}
|
||||
}
|
||||
|
||||
static constexpr auto name = props::descriptor;
|
||||
|
||||
// Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return
|
||||
// types but not bound arguments). We still provide them (with an explicitly delete) so that
|
||||
// you end up here if you try anyway.
|
||||
bool load(handle, bool) = delete;
|
||||
operator MapType() = delete;
|
||||
template <typename> using cast_op_type = MapType;
|
||||
};
|
||||
|
||||
// We can return any map-like object (but can only load Refs, specialized next):
|
||||
template <typename Type> struct type_caster<Type, enable_if_t<is_eigen_dense_map<Type>::value>>
|
||||
: eigen_map_caster<Type> {};
|
||||
|
||||
// Loader for Ref<...> arguments. See the documentation for info on how to make this work without
|
||||
// copying (it requires some extra effort in many cases).
|
||||
template <typename PlainObjectType, typename StrideType>
|
||||
struct type_caster<
|
||||
Eigen::Ref<PlainObjectType, 0, StrideType>,
|
||||
enable_if_t<is_eigen_dense_map<Eigen::Ref<PlainObjectType, 0, StrideType>>::value>
|
||||
> : public eigen_map_caster<Eigen::Ref<PlainObjectType, 0, StrideType>> {
|
||||
private:
|
||||
using Type = Eigen::Ref<PlainObjectType, 0, StrideType>;
|
||||
using props = EigenProps<Type>;
|
||||
using Scalar = typename props::Scalar;
|
||||
using MapType = Eigen::Map<PlainObjectType, 0, StrideType>;
|
||||
using Array = array_t<Scalar, array::forcecast |
|
||||
((props::row_major ? props::inner_stride : props::outer_stride) == 1 ? array::c_style :
|
||||
(props::row_major ? props::outer_stride : props::inner_stride) == 1 ? array::f_style : 0)>;
|
||||
static constexpr bool need_writeable = is_eigen_mutable_map<Type>::value;
|
||||
// Delay construction (these have no default constructor)
|
||||
std::unique_ptr<MapType> map;
|
||||
std::unique_ptr<Type> ref;
|
||||
// Our array. When possible, this is just a numpy array pointing to the source data, but
|
||||
// sometimes we can't avoid copying (e.g. input is not a numpy array at all, has an incompatible
|
||||
// layout, or is an array of a type that needs to be converted). Using a numpy temporary
|
||||
// (rather than an Eigen temporary) saves an extra copy when we need both type conversion and
|
||||
// storage order conversion. (Note that we refuse to use this temporary copy when loading an
|
||||
// argument for a Ref<M> with M non-const, i.e. a read-write reference).
|
||||
Array copy_or_ref;
|
||||
public:
|
||||
bool load(handle src, bool convert) {
|
||||
// First check whether what we have is already an array of the right type. If not, we can't
|
||||
// avoid a copy (because the copy is also going to do type conversion).
|
||||
bool need_copy = !isinstance<Array>(src);
|
||||
|
||||
EigenConformable<props::row_major> fits;
|
||||
if (!need_copy) {
|
||||
// We don't need a converting copy, but we also need to check whether the strides are
|
||||
// compatible with the Ref's stride requirements
|
||||
Array aref = reinterpret_borrow<Array>(src);
|
||||
|
||||
if (aref && (!need_writeable || aref.writeable())) {
|
||||
fits = props::conformable(aref);
|
||||
if (!fits) return false; // Incompatible dimensions
|
||||
if (!fits.template stride_compatible<props>())
|
||||
need_copy = true;
|
||||
else
|
||||
copy_or_ref = std::move(aref);
|
||||
}
|
||||
else {
|
||||
need_copy = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (need_copy) {
|
||||
// We need to copy: If we need a mutable reference, or we're not supposed to convert
|
||||
// (either because we're in the no-convert overload pass, or because we're explicitly
|
||||
// instructed not to copy (via `py::arg().noconvert()`) we have to fail loading.
|
||||
if (!convert || need_writeable) return false;
|
||||
|
||||
Array copy = Array::ensure(src);
|
||||
if (!copy) return false;
|
||||
fits = props::conformable(copy);
|
||||
if (!fits || !fits.template stride_compatible<props>())
|
||||
return false;
|
||||
copy_or_ref = std::move(copy);
|
||||
loader_life_support::add_patient(copy_or_ref);
|
||||
}
|
||||
|
||||
ref.reset();
|
||||
map.reset(new MapType(data(copy_or_ref), fits.rows, fits.cols, make_stride(fits.stride.outer(), fits.stride.inner())));
|
||||
ref.reset(new Type(*map));
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
operator Type*() { return ref.get(); }
|
||||
operator Type&() { return *ref; }
|
||||
template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>;
|
||||
|
||||
private:
|
||||
template <typename T = Type, enable_if_t<is_eigen_mutable_map<T>::value, int> = 0>
|
||||
Scalar *data(Array &a) { return a.mutable_data(); }
|
||||
|
||||
template <typename T = Type, enable_if_t<!is_eigen_mutable_map<T>::value, int> = 0>
|
||||
const Scalar *data(Array &a) { return a.data(); }
|
||||
|
||||
// Attempt to figure out a constructor of `Stride` that will work.
|
||||
// If both strides are fixed, use a default constructor:
|
||||
template <typename S> using stride_ctor_default = bool_constant<
|
||||
S::InnerStrideAtCompileTime != Eigen::Dynamic && S::OuterStrideAtCompileTime != Eigen::Dynamic &&
|
||||
std::is_default_constructible<S>::value>;
|
||||
// Otherwise, if there is a two-index constructor, assume it is (outer,inner) like
|
||||
// Eigen::Stride, and use it:
|
||||
template <typename S> using stride_ctor_dual = bool_constant<
|
||||
!stride_ctor_default<S>::value && std::is_constructible<S, EigenIndex, EigenIndex>::value>;
|
||||
// Otherwise, if there is a one-index constructor, and just one of the strides is dynamic, use
|
||||
// it (passing whichever stride is dynamic).
|
||||
template <typename S> using stride_ctor_outer = bool_constant<
|
||||
!any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value &&
|
||||
S::OuterStrideAtCompileTime == Eigen::Dynamic && S::InnerStrideAtCompileTime != Eigen::Dynamic &&
|
||||
std::is_constructible<S, EigenIndex>::value>;
|
||||
template <typename S> using stride_ctor_inner = bool_constant<
|
||||
!any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value &&
|
||||
S::InnerStrideAtCompileTime == Eigen::Dynamic && S::OuterStrideAtCompileTime != Eigen::Dynamic &&
|
||||
std::is_constructible<S, EigenIndex>::value>;
|
||||
|
||||
template <typename S = StrideType, enable_if_t<stride_ctor_default<S>::value, int> = 0>
|
||||
static S make_stride(EigenIndex, EigenIndex) { return S(); }
|
||||
template <typename S = StrideType, enable_if_t<stride_ctor_dual<S>::value, int> = 0>
|
||||
static S make_stride(EigenIndex outer, EigenIndex inner) { return S(outer, inner); }
|
||||
template <typename S = StrideType, enable_if_t<stride_ctor_outer<S>::value, int> = 0>
|
||||
static S make_stride(EigenIndex outer, EigenIndex) { return S(outer); }
|
||||
template <typename S = StrideType, enable_if_t<stride_ctor_inner<S>::value, int> = 0>
|
||||
static S make_stride(EigenIndex, EigenIndex inner) { return S(inner); }
|
||||
|
||||
};
|
||||
|
||||
// type_caster for special matrix types (e.g. DiagonalMatrix), which are EigenBase, but not
|
||||
// EigenDense (i.e. they don't have a data(), at least not with the usual matrix layout).
|
||||
// load() is not supported, but we can cast them into the python domain by first copying to a
|
||||
// regular Eigen::Matrix, then casting that.
|
||||
template <typename Type>
|
||||
struct type_caster<Type, enable_if_t<is_eigen_other<Type>::value>> {
|
||||
protected:
|
||||
using Matrix = Eigen::Matrix<typename Type::Scalar, Type::RowsAtCompileTime, Type::ColsAtCompileTime>;
|
||||
using props = EigenProps<Matrix>;
|
||||
public:
|
||||
static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) {
|
||||
handle h = eigen_encapsulate<props>(new Matrix(src));
|
||||
return h;
|
||||
}
|
||||
static handle cast(const Type *src, return_value_policy policy, handle parent) { return cast(*src, policy, parent); }
|
||||
|
||||
static constexpr auto name = props::descriptor;
|
||||
|
||||
// Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return
|
||||
// types but not bound arguments). We still provide them (with an explicitly delete) so that
|
||||
// you end up here if you try anyway.
|
||||
bool load(handle, bool) = delete;
|
||||
operator Type() = delete;
|
||||
template <typename> using cast_op_type = Type;
|
||||
};
|
||||
|
||||
template<typename Type>
|
||||
struct type_caster<Type, enable_if_t<is_eigen_sparse<Type>::value>> {
|
||||
typedef typename Type::Scalar Scalar;
|
||||
typedef remove_reference_t<decltype(*std::declval<Type>().outerIndexPtr())> StorageIndex;
|
||||
typedef typename Type::Index Index;
|
||||
static constexpr bool rowMajor = Type::IsRowMajor;
|
||||
|
||||
bool load(handle src, bool) {
|
||||
if (!src)
|
||||
return false;
|
||||
|
||||
auto obj = reinterpret_borrow<object>(src);
|
||||
object sparse_module = module::import("scipy.sparse");
|
||||
object matrix_type = sparse_module.attr(
|
||||
rowMajor ? "csr_matrix" : "csc_matrix");
|
||||
|
||||
if (!obj.get_type().is(matrix_type)) {
|
||||
try {
|
||||
obj = matrix_type(obj);
|
||||
} catch (const error_already_set &) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
auto values = array_t<Scalar>((object) obj.attr("data"));
|
||||
auto innerIndices = array_t<StorageIndex>((object) obj.attr("indices"));
|
||||
auto outerIndices = array_t<StorageIndex>((object) obj.attr("indptr"));
|
||||
auto shape = pybind11::tuple((pybind11::object) obj.attr("shape"));
|
||||
auto nnz = obj.attr("nnz").cast<Index>();
|
||||
|
||||
if (!values || !innerIndices || !outerIndices)
|
||||
return false;
|
||||
|
||||
value = Eigen::MappedSparseMatrix<Scalar, Type::Flags, StorageIndex>(
|
||||
shape[0].cast<Index>(), shape[1].cast<Index>(), nnz,
|
||||
outerIndices.mutable_data(), innerIndices.mutable_data(), values.mutable_data());
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) {
|
||||
const_cast<Type&>(src).makeCompressed();
|
||||
|
||||
object matrix_type = module::import("scipy.sparse").attr(
|
||||
rowMajor ? "csr_matrix" : "csc_matrix");
|
||||
|
||||
array data(src.nonZeros(), src.valuePtr());
|
||||
array outerIndices((rowMajor ? src.rows() : src.cols()) + 1, src.outerIndexPtr());
|
||||
array innerIndices(src.nonZeros(), src.innerIndexPtr());
|
||||
|
||||
return matrix_type(
|
||||
std::make_tuple(data, innerIndices, outerIndices),
|
||||
std::make_pair(src.rows(), src.cols())
|
||||
).release();
|
||||
}
|
||||
|
||||
PYBIND11_TYPE_CASTER(Type, _<(Type::IsRowMajor) != 0>("scipy.sparse.csr_matrix[", "scipy.sparse.csc_matrix[")
|
||||
+ npy_format_descriptor<Scalar>::name + _("]"));
|
||||
};
|
||||
|
||||
NAMESPACE_END(detail)
|
||||
NAMESPACE_END(PYBIND11_NAMESPACE)
|
||||
|
||||
#if defined(__GNUG__) || defined(__clang__)
|
||||
# pragma GCC diagnostic pop
|
||||
#elif defined(_MSC_VER)
|
||||
# pragma warning(pop)
|
||||
#endif
|
200
python/src/pybind11/embed.h
Normal file
200
python/src/pybind11/embed.h
Normal file
@@ -0,0 +1,200 @@
|
||||
/*
|
||||
pybind11/embed.h: Support for embedding the interpreter
|
||||
|
||||
Copyright (c) 2017 Wenzel Jakob <wenzel.jakob@epfl.ch>
|
||||
|
||||
All rights reserved. Use of this source code is governed by a
|
||||
BSD-style license that can be found in the LICENSE file.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "pybind11.h"
|
||||
#include "eval.h"
|
||||
|
||||
#if defined(PYPY_VERSION)
|
||||
# error Embedding the interpreter is not supported with PyPy
|
||||
#endif
|
||||
|
||||
#if PY_MAJOR_VERSION >= 3
|
||||
# define PYBIND11_EMBEDDED_MODULE_IMPL(name) \
|
||||
extern "C" PyObject *pybind11_init_impl_##name() { \
|
||||
return pybind11_init_wrapper_##name(); \
|
||||
}
|
||||
#else
|
||||
# define PYBIND11_EMBEDDED_MODULE_IMPL(name) \
|
||||
extern "C" void pybind11_init_impl_##name() { \
|
||||
pybind11_init_wrapper_##name(); \
|
||||
}
|
||||
#endif
|
||||
|
||||
/** \rst
|
||||
Add a new module to the table of builtins for the interpreter. Must be
|
||||
defined in global scope. The first macro parameter is the name of the
|
||||
module (without quotes). The second parameter is the variable which will
|
||||
be used as the interface to add functions and classes to the module.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
PYBIND11_EMBEDDED_MODULE(example, m) {
|
||||
// ... initialize functions and classes here
|
||||
m.def("foo", []() {
|
||||
return "Hello, World!";
|
||||
});
|
||||
}
|
||||
\endrst */
|
||||
#define PYBIND11_EMBEDDED_MODULE(name, variable) \
|
||||
static void PYBIND11_CONCAT(pybind11_init_, name)(pybind11::module &); \
|
||||
static PyObject PYBIND11_CONCAT(*pybind11_init_wrapper_, name)() { \
|
||||
auto m = pybind11::module(PYBIND11_TOSTRING(name)); \
|
||||
try { \
|
||||
PYBIND11_CONCAT(pybind11_init_, name)(m); \
|
||||
return m.ptr(); \
|
||||
} catch (pybind11::error_already_set &e) { \
|
||||
PyErr_SetString(PyExc_ImportError, e.what()); \
|
||||
return nullptr; \
|
||||
} catch (const std::exception &e) { \
|
||||
PyErr_SetString(PyExc_ImportError, e.what()); \
|
||||
return nullptr; \
|
||||
} \
|
||||
} \
|
||||
PYBIND11_EMBEDDED_MODULE_IMPL(name) \
|
||||
pybind11::detail::embedded_module name(PYBIND11_TOSTRING(name), \
|
||||
PYBIND11_CONCAT(pybind11_init_impl_, name)); \
|
||||
void PYBIND11_CONCAT(pybind11_init_, name)(pybind11::module &variable)
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
|
||||
NAMESPACE_BEGIN(detail)
|
||||
|
||||
/// Python 2.7/3.x compatible version of `PyImport_AppendInittab` and error checks.
|
||||
struct embedded_module {
|
||||
#if PY_MAJOR_VERSION >= 3
|
||||
using init_t = PyObject *(*)();
|
||||
#else
|
||||
using init_t = void (*)();
|
||||
#endif
|
||||
embedded_module(const char *name, init_t init) {
|
||||
if (Py_IsInitialized())
|
||||
pybind11_fail("Can't add new modules after the interpreter has been initialized");
|
||||
|
||||
auto result = PyImport_AppendInittab(name, init);
|
||||
if (result == -1)
|
||||
pybind11_fail("Insufficient memory to add a new module");
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(detail)
|
||||
|
||||
/** \rst
|
||||
Initialize the Python interpreter. No other pybind11 or CPython API functions can be
|
||||
called before this is done; with the exception of `PYBIND11_EMBEDDED_MODULE`. The
|
||||
optional parameter can be used to skip the registration of signal handlers (see the
|
||||
`Python documentation`_ for details). Calling this function again after the interpreter
|
||||
has already been initialized is a fatal error.
|
||||
|
||||
If initializing the Python interpreter fails, then the program is terminated. (This
|
||||
is controlled by the CPython runtime and is an exception to pybind11's normal behavior
|
||||
of throwing exceptions on errors.)
|
||||
|
||||
.. _Python documentation: https://docs.python.org/3/c-api/init.html#c.Py_InitializeEx
|
||||
\endrst */
|
||||
inline void initialize_interpreter(bool init_signal_handlers = true) {
|
||||
if (Py_IsInitialized())
|
||||
pybind11_fail("The interpreter is already running");
|
||||
|
||||
Py_InitializeEx(init_signal_handlers ? 1 : 0);
|
||||
|
||||
// Make .py files in the working directory available by default
|
||||
module::import("sys").attr("path").cast<list>().append(".");
|
||||
}
|
||||
|
||||
/** \rst
|
||||
Shut down the Python interpreter. No pybind11 or CPython API functions can be called
|
||||
after this. In addition, pybind11 objects must not outlive the interpreter:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
{ // BAD
|
||||
py::initialize_interpreter();
|
||||
auto hello = py::str("Hello, World!");
|
||||
py::finalize_interpreter();
|
||||
} // <-- BOOM, hello's destructor is called after interpreter shutdown
|
||||
|
||||
{ // GOOD
|
||||
py::initialize_interpreter();
|
||||
{ // scoped
|
||||
auto hello = py::str("Hello, World!");
|
||||
} // <-- OK, hello is cleaned up properly
|
||||
py::finalize_interpreter();
|
||||
}
|
||||
|
||||
{ // BETTER
|
||||
py::scoped_interpreter guard{};
|
||||
auto hello = py::str("Hello, World!");
|
||||
}
|
||||
|
||||
.. warning::
|
||||
|
||||
The interpreter can be restarted by calling `initialize_interpreter` again.
|
||||
Modules created using pybind11 can be safely re-initialized. However, Python
|
||||
itself cannot completely unload binary extension modules and there are several
|
||||
caveats with regard to interpreter restarting. All the details can be found
|
||||
in the CPython documentation. In short, not all interpreter memory may be
|
||||
freed, either due to reference cycles or user-created global data.
|
||||
|
||||
\endrst */
|
||||
inline void finalize_interpreter() {
|
||||
handle builtins(PyEval_GetBuiltins());
|
||||
const char *id = PYBIND11_INTERNALS_ID;
|
||||
|
||||
// Get the internals pointer (without creating it if it doesn't exist). It's possible for the
|
||||
// internals to be created during Py_Finalize() (e.g. if a py::capsule calls `get_internals()`
|
||||
// during destruction), so we get the pointer-pointer here and check it after Py_Finalize().
|
||||
detail::internals **internals_ptr_ptr = detail::get_internals_pp();
|
||||
// It could also be stashed in builtins, so look there too:
|
||||
if (builtins.contains(id) && isinstance<capsule>(builtins[id]))
|
||||
internals_ptr_ptr = capsule(builtins[id]);
|
||||
|
||||
Py_Finalize();
|
||||
|
||||
if (internals_ptr_ptr) {
|
||||
delete *internals_ptr_ptr;
|
||||
*internals_ptr_ptr = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
/** \rst
|
||||
Scope guard version of `initialize_interpreter` and `finalize_interpreter`.
|
||||
This a move-only guard and only a single instance can exist.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind11/embed.h>
|
||||
|
||||
int main() {
|
||||
py::scoped_interpreter guard{};
|
||||
py::print(Hello, World!);
|
||||
} // <-- interpreter shutdown
|
||||
\endrst */
|
||||
class scoped_interpreter {
|
||||
public:
|
||||
scoped_interpreter(bool init_signal_handlers = true) {
|
||||
initialize_interpreter(init_signal_handlers);
|
||||
}
|
||||
|
||||
scoped_interpreter(const scoped_interpreter &) = delete;
|
||||
scoped_interpreter(scoped_interpreter &&other) noexcept { other.is_valid = false; }
|
||||
scoped_interpreter &operator=(const scoped_interpreter &) = delete;
|
||||
scoped_interpreter &operator=(scoped_interpreter &&) = delete;
|
||||
|
||||
~scoped_interpreter() {
|
||||
if (is_valid)
|
||||
finalize_interpreter();
|
||||
}
|
||||
|
||||
private:
|
||||
bool is_valid = true;
|
||||
};
|
||||
|
||||
NAMESPACE_END(PYBIND11_NAMESPACE)
|
117
python/src/pybind11/eval.h
Normal file
117
python/src/pybind11/eval.h
Normal file
@@ -0,0 +1,117 @@
|
||||
/*
|
||||
pybind11/exec.h: Support for evaluating Python expressions and statements
|
||||
from strings and files
|
||||
|
||||
Copyright (c) 2016 Klemens Morgenstern <klemens.morgenstern@ed-chemnitz.de> and
|
||||
Wenzel Jakob <wenzel.jakob@epfl.ch>
|
||||
|
||||
All rights reserved. Use of this source code is governed by a
|
||||
BSD-style license that can be found in the LICENSE file.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "pybind11.h"
|
||||
|
||||
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
|
||||
|
||||
enum eval_mode {
|
||||
/// Evaluate a string containing an isolated expression
|
||||
eval_expr,
|
||||
|
||||
/// Evaluate a string containing a single statement. Returns \c none
|
||||
eval_single_statement,
|
||||
|
||||
/// Evaluate a string containing a sequence of statement. Returns \c none
|
||||
eval_statements
|
||||
};
|
||||
|
||||
template <eval_mode mode = eval_expr>
|
||||
object eval(str expr, object global = globals(), object local = object()) {
|
||||
if (!local)
|
||||
local = global;
|
||||
|
||||
/* PyRun_String does not accept a PyObject / encoding specifier,
|
||||
this seems to be the only alternative */
|
||||
std::string buffer = "# -*- coding: utf-8 -*-\n" + (std::string) expr;
|
||||
|
||||
int start;
|
||||
switch (mode) {
|
||||
case eval_expr: start = Py_eval_input; break;
|
||||
case eval_single_statement: start = Py_single_input; break;
|
||||
case eval_statements: start = Py_file_input; break;
|
||||
default: pybind11_fail("invalid evaluation mode");
|
||||
}
|
||||
|
||||
PyObject *result = PyRun_String(buffer.c_str(), start, global.ptr(), local.ptr());
|
||||
if (!result)
|
||||
throw error_already_set();
|
||||
return reinterpret_steal<object>(result);
|
||||
}
|
||||
|
||||
template <eval_mode mode = eval_expr, size_t N>
|
||||
object eval(const char (&s)[N], object global = globals(), object local = object()) {
|
||||
/* Support raw string literals by removing common leading whitespace */
|
||||
auto expr = (s[0] == '\n') ? str(module::import("textwrap").attr("dedent")(s))
|
||||
: str(s);
|
||||
return eval<mode>(expr, global, local);
|
||||
}
|
||||
|
||||
inline void exec(str expr, object global = globals(), object local = object()) {
|
||||
eval<eval_statements>(expr, global, local);
|
||||
}
|
||||
|
||||
template <size_t N>
|
||||
void exec(const char (&s)[N], object global = globals(), object local = object()) {
|
||||
eval<eval_statements>(s, global, local);
|
||||
}
|
||||
|
||||
template <eval_mode mode = eval_statements>
|
||||
object eval_file(str fname, object global = globals(), object local = object()) {
|
||||
if (!local)
|
||||
local = global;
|
||||
|
||||
int start;
|
||||
switch (mode) {
|
||||
case eval_expr: start = Py_eval_input; break;
|
||||
case eval_single_statement: start = Py_single_input; break;
|
||||
case eval_statements: start = Py_file_input; break;
|
||||
default: pybind11_fail("invalid evaluation mode");
|
||||
}
|
||||
|
||||
int closeFile = 1;
|
||||
std::string fname_str = (std::string) fname;
|
||||
#if PY_VERSION_HEX >= 0x03040000
|
||||
FILE *f = _Py_fopen_obj(fname.ptr(), "r");
|
||||
#elif PY_VERSION_HEX >= 0x03000000
|
||||
FILE *f = _Py_fopen(fname.ptr(), "r");
|
||||
#else
|
||||
/* No unicode support in open() :( */
|
||||
auto fobj = reinterpret_steal<object>(PyFile_FromString(
|
||||
const_cast<char *>(fname_str.c_str()),
|
||||
const_cast<char*>("r")));
|
||||
FILE *f = nullptr;
|
||||
if (fobj)
|
||||
f = PyFile_AsFile(fobj.ptr());
|
||||
closeFile = 0;
|
||||
#endif
|
||||
if (!f) {
|
||||
PyErr_Clear();
|
||||
pybind11_fail("File \"" + fname_str + "\" could not be opened!");
|
||||
}
|
||||
|
||||
#if PY_VERSION_HEX < 0x03000000 && defined(PYPY_VERSION)
|
||||
PyObject *result = PyRun_File(f, fname_str.c_str(), start, global.ptr(),
|
||||
local.ptr());
|
||||
(void) closeFile;
|
||||
#else
|
||||
PyObject *result = PyRun_FileEx(f, fname_str.c_str(), start, global.ptr(),
|
||||
local.ptr(), closeFile);
|
||||
#endif
|
||||
|
||||
if (!result)
|
||||
throw error_already_set();
|
||||
return reinterpret_steal<object>(result);
|
||||
}
|
||||
|
||||
NAMESPACE_END(PYBIND11_NAMESPACE)
|
108
python/src/pybind11/functional.h
Normal file
108
python/src/pybind11/functional.h
Normal file
@@ -0,0 +1,108 @@
|
||||
/*
|
||||
pybind11/functional.h: std::function<> support
|
||||
|
||||
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
|
||||
|
||||
All rights reserved. Use of this source code is governed by a
|
||||
BSD-style license that can be found in the LICENSE file.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "pybind11.h"
|
||||
#include <functional>
|
||||
|
||||
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
|
||||
NAMESPACE_BEGIN(detail)
|
||||
|
||||
template <typename Return, typename... Args>
|
||||
struct type_caster<std::function<Return(Args...)>> {
|
||||
using type = std::function<Return(Args...)>;
|
||||
using retval_type = conditional_t<std::is_same<Return, void>::value, void_type, Return>;
|
||||
using function_type = Return (*) (Args...);
|
||||
|
||||
public:
|
||||
bool load(handle src, bool convert) {
|
||||
if (src.is_none()) {
|
||||
// Defer accepting None to other overloads (if we aren't in convert mode):
|
||||
if (!convert) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
if (!isinstance<function>(src))
|
||||
return false;
|
||||
|
||||
auto func = reinterpret_borrow<function>(src);
|
||||
|
||||
/*
|
||||
When passing a C++ function as an argument to another C++
|
||||
function via Python, every function call would normally involve
|
||||
a full C++ -> Python -> C++ roundtrip, which can be prohibitive.
|
||||
Here, we try to at least detect the case where the function is
|
||||
stateless (i.e. function pointer or lambda function without
|
||||
captured variables), in which case the roundtrip can be avoided.
|
||||
*/
|
||||
if (auto cfunc = func.cpp_function()) {
|
||||
auto c = reinterpret_borrow<capsule>(PyCFunction_GET_SELF(cfunc.ptr()));
|
||||
auto rec = (function_record *) c;
|
||||
|
||||
if (rec && rec->is_stateless &&
|
||||
same_type(typeid(function_type), *reinterpret_cast<const std::type_info *>(rec->data[1]))) {
|
||||
struct capture { function_type f; };
|
||||
value = ((capture *) &rec->data)->f;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// ensure GIL is held during functor destruction
|
||||
struct func_handle {
|
||||
function f;
|
||||
func_handle(function&& f_) : f(std::move(f_)) {}
|
||||
func_handle(const func_handle&) = default;
|
||||
~func_handle() {
|
||||
gil_scoped_acquire acq;
|
||||
function kill_f(std::move(f));
|
||||
}
|
||||
};
|
||||
|
||||
// value = [hfunc = func_handle(std::move(func))](Args... args) -> Return {
|
||||
// gil_scoped_acquire acq;
|
||||
// object retval(hfunc.f(std::forward<Args>(args)...));
|
||||
// /* Visual studio 2015 parser issue: need parentheses around this expression */
|
||||
// return (retval.template cast<Return>());
|
||||
// };
|
||||
|
||||
struct func_wrapper {
|
||||
func_handle hfunc;
|
||||
func_wrapper(func_handle&& hf): hfunc(std::move(hf)) {}
|
||||
Return operator()(Args... args) const {
|
||||
gil_scoped_acquire acq;
|
||||
object retval(hfunc.f(std::forward<Args>(args)...));
|
||||
/* Visual studio 2015 parser issue: need parentheses around this expression */
|
||||
return (retval.template cast<Return>());
|
||||
}
|
||||
};
|
||||
|
||||
value = func_wrapper(func_handle(std::move(func)));
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename Func>
|
||||
static handle cast(Func &&f_, return_value_policy policy, handle /* parent */) {
|
||||
if (!f_)
|
||||
return none().inc_ref();
|
||||
|
||||
auto result = f_.template target<function_type>();
|
||||
if (result)
|
||||
return cpp_function(*result, policy).release();
|
||||
else
|
||||
return cpp_function(std::forward<Func>(f_), policy).release();
|
||||
}
|
||||
|
||||
PYBIND11_TYPE_CASTER(type, _("Callable[[") + concat(make_caster<Args>::name...) + _("], ")
|
||||
+ make_caster<retval_type>::name + _("]"));
|
||||
};
|
||||
|
||||
NAMESPACE_END(detail)
|
||||
NAMESPACE_END(PYBIND11_NAMESPACE)
|
207
python/src/pybind11/iostream.h
Normal file
207
python/src/pybind11/iostream.h
Normal file
@@ -0,0 +1,207 @@
|
||||
/*
|
||||
pybind11/iostream.h -- Tools to assist with redirecting cout and cerr to Python
|
||||
|
||||
Copyright (c) 2017 Henry F. Schreiner
|
||||
|
||||
All rights reserved. Use of this source code is governed by a
|
||||
BSD-style license that can be found in the LICENSE file.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "pybind11.h"
|
||||
|
||||
#include <streambuf>
|
||||
#include <ostream>
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include <iostream>
|
||||
|
||||
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
|
||||
NAMESPACE_BEGIN(detail)
|
||||
|
||||
// Buffer that writes to Python instead of C++
|
||||
class pythonbuf : public std::streambuf {
|
||||
private:
|
||||
using traits_type = std::streambuf::traits_type;
|
||||
|
||||
const size_t buf_size;
|
||||
std::unique_ptr<char[]> d_buffer;
|
||||
object pywrite;
|
||||
object pyflush;
|
||||
|
||||
int overflow(int c) {
|
||||
if (!traits_type::eq_int_type(c, traits_type::eof())) {
|
||||
*pptr() = traits_type::to_char_type(c);
|
||||
pbump(1);
|
||||
}
|
||||
return sync() == 0 ? traits_type::not_eof(c) : traits_type::eof();
|
||||
}
|
||||
|
||||
int sync() {
|
||||
if (pbase() != pptr()) {
|
||||
// This subtraction cannot be negative, so dropping the sign
|
||||
str line(pbase(), static_cast<size_t>(pptr() - pbase()));
|
||||
|
||||
{
|
||||
gil_scoped_acquire tmp;
|
||||
pywrite(line);
|
||||
pyflush();
|
||||
}
|
||||
|
||||
setp(pbase(), epptr());
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
pythonbuf(object pyostream, size_t buffer_size = 1024)
|
||||
: buf_size(buffer_size),
|
||||
d_buffer(new char[buf_size]),
|
||||
pywrite(pyostream.attr("write")),
|
||||
pyflush(pyostream.attr("flush")) {
|
||||
setp(d_buffer.get(), d_buffer.get() + buf_size - 1);
|
||||
}
|
||||
|
||||
/// Sync before destroy
|
||||
~pythonbuf() {
|
||||
sync();
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(detail)
|
||||
|
||||
|
||||
/** \rst
|
||||
This a move-only guard that redirects output.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind11/iostream.h>
|
||||
|
||||
...
|
||||
|
||||
{
|
||||
py::scoped_ostream_redirect output;
|
||||
std::cout << "Hello, World!"; // Python stdout
|
||||
} // <-- return std::cout to normal
|
||||
|
||||
You can explicitly pass the c++ stream and the python object,
|
||||
for example to guard stderr instead.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
{
|
||||
py::scoped_ostream_redirect output{std::cerr, py::module::import("sys").attr("stderr")};
|
||||
std::cerr << "Hello, World!";
|
||||
}
|
||||
\endrst */
|
||||
class scoped_ostream_redirect {
|
||||
protected:
|
||||
std::streambuf *old;
|
||||
std::ostream &costream;
|
||||
detail::pythonbuf buffer;
|
||||
|
||||
public:
|
||||
scoped_ostream_redirect(
|
||||
std::ostream &costream = std::cout,
|
||||
object pyostream = module::import("sys").attr("stdout"))
|
||||
: costream(costream), buffer(pyostream) {
|
||||
old = costream.rdbuf(&buffer);
|
||||
}
|
||||
|
||||
~scoped_ostream_redirect() {
|
||||
costream.rdbuf(old);
|
||||
}
|
||||
|
||||
scoped_ostream_redirect(const scoped_ostream_redirect &) = delete;
|
||||
scoped_ostream_redirect(scoped_ostream_redirect &&other) = default;
|
||||
scoped_ostream_redirect &operator=(const scoped_ostream_redirect &) = delete;
|
||||
scoped_ostream_redirect &operator=(scoped_ostream_redirect &&) = delete;
|
||||
};
|
||||
|
||||
|
||||
/** \rst
|
||||
Like `scoped_ostream_redirect`, but redirects cerr by default. This class
|
||||
is provided primary to make ``py::call_guard`` easier to make.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
m.def("noisy_func", &noisy_func,
|
||||
py::call_guard<scoped_ostream_redirect,
|
||||
scoped_estream_redirect>());
|
||||
|
||||
\endrst */
|
||||
class scoped_estream_redirect : public scoped_ostream_redirect {
|
||||
public:
|
||||
scoped_estream_redirect(
|
||||
std::ostream &costream = std::cerr,
|
||||
object pyostream = module::import("sys").attr("stderr"))
|
||||
: scoped_ostream_redirect(costream,pyostream) {}
|
||||
};
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(detail)
|
||||
|
||||
// Class to redirect output as a context manager. C++ backend.
|
||||
class OstreamRedirect {
|
||||
bool do_stdout_;
|
||||
bool do_stderr_;
|
||||
std::unique_ptr<scoped_ostream_redirect> redirect_stdout;
|
||||
std::unique_ptr<scoped_estream_redirect> redirect_stderr;
|
||||
|
||||
public:
|
||||
OstreamRedirect(bool do_stdout = true, bool do_stderr = true)
|
||||
: do_stdout_(do_stdout), do_stderr_(do_stderr) {}
|
||||
|
||||
void enter() {
|
||||
if (do_stdout_)
|
||||
redirect_stdout.reset(new scoped_ostream_redirect());
|
||||
if (do_stderr_)
|
||||
redirect_stderr.reset(new scoped_estream_redirect());
|
||||
}
|
||||
|
||||
void exit() {
|
||||
redirect_stdout.reset();
|
||||
redirect_stderr.reset();
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(detail)
|
||||
|
||||
/** \rst
|
||||
This is a helper function to add a C++ redirect context manager to Python
|
||||
instead of using a C++ guard. To use it, add the following to your binding code:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind11/iostream.h>
|
||||
|
||||
...
|
||||
|
||||
py::add_ostream_redirect(m, "ostream_redirect");
|
||||
|
||||
You now have a Python context manager that redirects your output:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
with m.ostream_redirect():
|
||||
m.print_to_cout_function()
|
||||
|
||||
This manager can optionally be told which streams to operate on:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
with m.ostream_redirect(stdout=true, stderr=true):
|
||||
m.noisy_function_with_error_printing()
|
||||
|
||||
\endrst */
|
||||
inline class_<detail::OstreamRedirect> add_ostream_redirect(module m, std::string name = "ostream_redirect") {
|
||||
return class_<detail::OstreamRedirect>(m, name.c_str(), module_local())
|
||||
.def(init<bool,bool>(), arg("stdout")=true, arg("stderr")=true)
|
||||
.def("__enter__", &detail::OstreamRedirect::enter)
|
||||
.def("__exit__", [](detail::OstreamRedirect &self_, args) { self_.exit(); });
|
||||
}
|
||||
|
||||
NAMESPACE_END(PYBIND11_NAMESPACE)
|
1610
python/src/pybind11/numpy.h
Normal file
1610
python/src/pybind11/numpy.h
Normal file
File diff suppressed because it is too large
Load Diff
168
python/src/pybind11/operators.h
Normal file
168
python/src/pybind11/operators.h
Normal file
@@ -0,0 +1,168 @@
|
||||
/*
|
||||
pybind11/operator.h: Metatemplates for operator overloading
|
||||
|
||||
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
|
||||
|
||||
All rights reserved. Use of this source code is governed by a
|
||||
BSD-style license that can be found in the LICENSE file.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "pybind11.h"
|
||||
|
||||
#if defined(__clang__) && !defined(__INTEL_COMPILER)
|
||||
# pragma clang diagnostic ignored "-Wunsequenced" // multiple unsequenced modifications to 'self' (when using def(py::self OP Type()))
|
||||
#elif defined(_MSC_VER)
|
||||
# pragma warning(push)
|
||||
# pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
|
||||
#endif
|
||||
|
||||
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
|
||||
NAMESPACE_BEGIN(detail)
|
||||
|
||||
/// Enumeration with all supported operator types
|
||||
enum op_id : int {
|
||||
op_add, op_sub, op_mul, op_div, op_mod, op_divmod, op_pow, op_lshift,
|
||||
op_rshift, op_and, op_xor, op_or, op_neg, op_pos, op_abs, op_invert,
|
||||
op_int, op_long, op_float, op_str, op_cmp, op_gt, op_ge, op_lt, op_le,
|
||||
op_eq, op_ne, op_iadd, op_isub, op_imul, op_idiv, op_imod, op_ilshift,
|
||||
op_irshift, op_iand, op_ixor, op_ior, op_complex, op_bool, op_nonzero,
|
||||
op_repr, op_truediv, op_itruediv, op_hash
|
||||
};
|
||||
|
||||
enum op_type : int {
|
||||
op_l, /* base type on left */
|
||||
op_r, /* base type on right */
|
||||
op_u /* unary operator */
|
||||
};
|
||||
|
||||
struct self_t { };
|
||||
static const self_t self = self_t();
|
||||
|
||||
/// Type for an unused type slot
|
||||
struct undefined_t { };
|
||||
|
||||
/// Don't warn about an unused variable
|
||||
inline self_t __self() { return self; }
|
||||
|
||||
/// base template of operator implementations
|
||||
template <op_id, op_type, typename B, typename L, typename R> struct op_impl { };
|
||||
|
||||
/// Operator implementation generator
|
||||
template <op_id id, op_type ot, typename L, typename R> struct op_ {
|
||||
template <typename Class, typename... Extra> void execute(Class &cl, const Extra&... extra) const {
|
||||
using Base = typename Class::type;
|
||||
using L_type = conditional_t<std::is_same<L, self_t>::value, Base, L>;
|
||||
using R_type = conditional_t<std::is_same<R, self_t>::value, Base, R>;
|
||||
using op = op_impl<id, ot, Base, L_type, R_type>;
|
||||
cl.def(op::name(), &op::execute, is_operator(), extra...);
|
||||
#if PY_MAJOR_VERSION < 3
|
||||
if (id == op_truediv || id == op_itruediv)
|
||||
cl.def(id == op_itruediv ? "__idiv__" : ot == op_l ? "__div__" : "__rdiv__",
|
||||
&op::execute, is_operator(), extra...);
|
||||
#endif
|
||||
}
|
||||
template <typename Class, typename... Extra> void execute_cast(Class &cl, const Extra&... extra) const {
|
||||
using Base = typename Class::type;
|
||||
using L_type = conditional_t<std::is_same<L, self_t>::value, Base, L>;
|
||||
using R_type = conditional_t<std::is_same<R, self_t>::value, Base, R>;
|
||||
using op = op_impl<id, ot, Base, L_type, R_type>;
|
||||
cl.def(op::name(), &op::execute_cast, is_operator(), extra...);
|
||||
#if PY_MAJOR_VERSION < 3
|
||||
if (id == op_truediv || id == op_itruediv)
|
||||
cl.def(id == op_itruediv ? "__idiv__" : ot == op_l ? "__div__" : "__rdiv__",
|
||||
&op::execute, is_operator(), extra...);
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
#define PYBIND11_BINARY_OPERATOR(id, rid, op, expr) \
|
||||
template <typename B, typename L, typename R> struct op_impl<op_##id, op_l, B, L, R> { \
|
||||
static char const* name() { return "__" #id "__"; } \
|
||||
static auto execute(const L &l, const R &r) -> decltype(expr) { return (expr); } \
|
||||
static B execute_cast(const L &l, const R &r) { return B(expr); } \
|
||||
}; \
|
||||
template <typename B, typename L, typename R> struct op_impl<op_##id, op_r, B, L, R> { \
|
||||
static char const* name() { return "__" #rid "__"; } \
|
||||
static auto execute(const R &r, const L &l) -> decltype(expr) { return (expr); } \
|
||||
static B execute_cast(const R &r, const L &l) { return B(expr); } \
|
||||
}; \
|
||||
inline op_<op_##id, op_l, self_t, self_t> op(const self_t &, const self_t &) { \
|
||||
return op_<op_##id, op_l, self_t, self_t>(); \
|
||||
} \
|
||||
template <typename T> op_<op_##id, op_l, self_t, T> op(const self_t &, const T &) { \
|
||||
return op_<op_##id, op_l, self_t, T>(); \
|
||||
} \
|
||||
template <typename T> op_<op_##id, op_r, T, self_t> op(const T &, const self_t &) { \
|
||||
return op_<op_##id, op_r, T, self_t>(); \
|
||||
}
|
||||
|
||||
#define PYBIND11_INPLACE_OPERATOR(id, op, expr) \
|
||||
template <typename B, typename L, typename R> struct op_impl<op_##id, op_l, B, L, R> { \
|
||||
static char const* name() { return "__" #id "__"; } \
|
||||
static auto execute(L &l, const R &r) -> decltype(expr) { return expr; } \
|
||||
static B execute_cast(L &l, const R &r) { return B(expr); } \
|
||||
}; \
|
||||
template <typename T> op_<op_##id, op_l, self_t, T> op(const self_t &, const T &) { \
|
||||
return op_<op_##id, op_l, self_t, T>(); \
|
||||
}
|
||||
|
||||
#define PYBIND11_UNARY_OPERATOR(id, op, expr) \
|
||||
template <typename B, typename L> struct op_impl<op_##id, op_u, B, L, undefined_t> { \
|
||||
static char const* name() { return "__" #id "__"; } \
|
||||
static auto execute(const L &l) -> decltype(expr) { return expr; } \
|
||||
static B execute_cast(const L &l) { return B(expr); } \
|
||||
}; \
|
||||
inline op_<op_##id, op_u, self_t, undefined_t> op(const self_t &) { \
|
||||
return op_<op_##id, op_u, self_t, undefined_t>(); \
|
||||
}
|
||||
|
||||
PYBIND11_BINARY_OPERATOR(sub, rsub, operator-, l - r)
|
||||
PYBIND11_BINARY_OPERATOR(add, radd, operator+, l + r)
|
||||
PYBIND11_BINARY_OPERATOR(mul, rmul, operator*, l * r)
|
||||
PYBIND11_BINARY_OPERATOR(truediv, rtruediv, operator/, l / r)
|
||||
PYBIND11_BINARY_OPERATOR(mod, rmod, operator%, l % r)
|
||||
PYBIND11_BINARY_OPERATOR(lshift, rlshift, operator<<, l << r)
|
||||
PYBIND11_BINARY_OPERATOR(rshift, rrshift, operator>>, l >> r)
|
||||
PYBIND11_BINARY_OPERATOR(and, rand, operator&, l & r)
|
||||
PYBIND11_BINARY_OPERATOR(xor, rxor, operator^, l ^ r)
|
||||
PYBIND11_BINARY_OPERATOR(eq, eq, operator==, l == r)
|
||||
PYBIND11_BINARY_OPERATOR(ne, ne, operator!=, l != r)
|
||||
PYBIND11_BINARY_OPERATOR(or, ror, operator|, l | r)
|
||||
PYBIND11_BINARY_OPERATOR(gt, lt, operator>, l > r)
|
||||
PYBIND11_BINARY_OPERATOR(ge, le, operator>=, l >= r)
|
||||
PYBIND11_BINARY_OPERATOR(lt, gt, operator<, l < r)
|
||||
PYBIND11_BINARY_OPERATOR(le, ge, operator<=, l <= r)
|
||||
//PYBIND11_BINARY_OPERATOR(pow, rpow, pow, std::pow(l, r))
|
||||
PYBIND11_INPLACE_OPERATOR(iadd, operator+=, l += r)
|
||||
PYBIND11_INPLACE_OPERATOR(isub, operator-=, l -= r)
|
||||
PYBIND11_INPLACE_OPERATOR(imul, operator*=, l *= r)
|
||||
PYBIND11_INPLACE_OPERATOR(itruediv, operator/=, l /= r)
|
||||
PYBIND11_INPLACE_OPERATOR(imod, operator%=, l %= r)
|
||||
PYBIND11_INPLACE_OPERATOR(ilshift, operator<<=, l <<= r)
|
||||
PYBIND11_INPLACE_OPERATOR(irshift, operator>>=, l >>= r)
|
||||
PYBIND11_INPLACE_OPERATOR(iand, operator&=, l &= r)
|
||||
PYBIND11_INPLACE_OPERATOR(ixor, operator^=, l ^= r)
|
||||
PYBIND11_INPLACE_OPERATOR(ior, operator|=, l |= r)
|
||||
PYBIND11_UNARY_OPERATOR(neg, operator-, -l)
|
||||
PYBIND11_UNARY_OPERATOR(pos, operator+, +l)
|
||||
PYBIND11_UNARY_OPERATOR(abs, abs, std::abs(l))
|
||||
PYBIND11_UNARY_OPERATOR(hash, hash, std::hash<L>()(l))
|
||||
PYBIND11_UNARY_OPERATOR(invert, operator~, (~l))
|
||||
PYBIND11_UNARY_OPERATOR(bool, operator!, !!l)
|
||||
PYBIND11_UNARY_OPERATOR(int, int_, (int) l)
|
||||
PYBIND11_UNARY_OPERATOR(float, float_, (double) l)
|
||||
|
||||
#undef PYBIND11_BINARY_OPERATOR
|
||||
#undef PYBIND11_INPLACE_OPERATOR
|
||||
#undef PYBIND11_UNARY_OPERATOR
|
||||
NAMESPACE_END(detail)
|
||||
|
||||
using detail::self;
|
||||
|
||||
NAMESPACE_END(PYBIND11_NAMESPACE)
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
# pragma warning(pop)
|
||||
#endif
|
65
python/src/pybind11/options.h
Normal file
65
python/src/pybind11/options.h
Normal file
@@ -0,0 +1,65 @@
|
||||
/*
|
||||
pybind11/options.h: global settings that are configurable at runtime.
|
||||
|
||||
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
|
||||
|
||||
All rights reserved. Use of this source code is governed by a
|
||||
BSD-style license that can be found in the LICENSE file.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "detail/common.h"
|
||||
|
||||
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
|
||||
|
||||
class options {
|
||||
public:
|
||||
|
||||
// Default RAII constructor, which leaves settings as they currently are.
|
||||
options() : previous_state(global_state()) {}
|
||||
|
||||
// Class is non-copyable.
|
||||
options(const options&) = delete;
|
||||
options& operator=(const options&) = delete;
|
||||
|
||||
// Destructor, which restores settings that were in effect before.
|
||||
~options() {
|
||||
global_state() = previous_state;
|
||||
}
|
||||
|
||||
// Setter methods (affect the global state):
|
||||
|
||||
options& disable_user_defined_docstrings() & { global_state().show_user_defined_docstrings = false; return *this; }
|
||||
|
||||
options& enable_user_defined_docstrings() & { global_state().show_user_defined_docstrings = true; return *this; }
|
||||
|
||||
options& disable_function_signatures() & { global_state().show_function_signatures = false; return *this; }
|
||||
|
||||
options& enable_function_signatures() & { global_state().show_function_signatures = true; return *this; }
|
||||
|
||||
// Getter methods (return the global state):
|
||||
|
||||
static bool show_user_defined_docstrings() { return global_state().show_user_defined_docstrings; }
|
||||
|
||||
static bool show_function_signatures() { return global_state().show_function_signatures; }
|
||||
|
||||
// This type is not meant to be allocated on the heap.
|
||||
void* operator new(size_t) = delete;
|
||||
|
||||
private:
|
||||
|
||||
struct state {
|
||||
bool show_user_defined_docstrings = true; //< Include user-supplied texts in docstrings.
|
||||
bool show_function_signatures = true; //< Include auto-generated function signatures in docstrings.
|
||||
};
|
||||
|
||||
static state &global_state() {
|
||||
static state instance;
|
||||
return instance;
|
||||
}
|
||||
|
||||
state previous_state;
|
||||
};
|
||||
|
||||
NAMESPACE_END(PYBIND11_NAMESPACE)
|
2162
python/src/pybind11/pybind11.h
Normal file
2162
python/src/pybind11/pybind11.h
Normal file
File diff suppressed because it is too large
Load Diff
1471
python/src/pybind11/pytypes.h
Normal file
1471
python/src/pybind11/pytypes.h
Normal file
File diff suppressed because it is too large
Load Diff
386
python/src/pybind11/stl.h
Normal file
386
python/src/pybind11/stl.h
Normal file
@@ -0,0 +1,386 @@
|
||||
/*
|
||||
pybind11/stl.h: Transparent conversion for STL data types
|
||||
|
||||
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
|
||||
|
||||
All rights reserved. Use of this source code is governed by a
|
||||
BSD-style license that can be found in the LICENSE file.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "pybind11.h"
|
||||
#include <set>
|
||||
#include <unordered_set>
|
||||
#include <map>
|
||||
#include <unordered_map>
|
||||
#include <iostream>
|
||||
#include <list>
|
||||
#include <deque>
|
||||
#include <valarray>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(push)
|
||||
#pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
|
||||
#endif
|
||||
|
||||
#ifdef __has_include
|
||||
// std::optional (but including it in c++14 mode isn't allowed)
|
||||
# if defined(PYBIND11_CPP17) && __has_include(<optional>)
|
||||
# include <optional>
|
||||
# define PYBIND11_HAS_OPTIONAL 1
|
||||
# endif
|
||||
// std::experimental::optional (but not allowed in c++11 mode)
|
||||
# if defined(PYBIND11_CPP14) && (__has_include(<experimental/optional>) && \
|
||||
!__has_include(<optional>))
|
||||
# include <experimental/optional>
|
||||
# define PYBIND11_HAS_EXP_OPTIONAL 1
|
||||
# endif
|
||||
// std::variant
|
||||
# if defined(PYBIND11_CPP17) && __has_include(<variant>)
|
||||
# include <variant>
|
||||
# define PYBIND11_HAS_VARIANT 1
|
||||
# endif
|
||||
#elif defined(_MSC_VER) && defined(PYBIND11_CPP17)
|
||||
# include <optional>
|
||||
# include <variant>
|
||||
# define PYBIND11_HAS_OPTIONAL 1
|
||||
# define PYBIND11_HAS_VARIANT 1
|
||||
#endif
|
||||
|
||||
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
|
||||
NAMESPACE_BEGIN(detail)
|
||||
|
||||
/// Extracts an const lvalue reference or rvalue reference for U based on the type of T (e.g. for
|
||||
/// forwarding a container element). Typically used indirect via forwarded_type(), below.
|
||||
template <typename T, typename U>
|
||||
using forwarded_type = conditional_t<
|
||||
std::is_lvalue_reference<T>::value, remove_reference_t<U> &, remove_reference_t<U> &&>;
|
||||
|
||||
/// Forwards a value U as rvalue or lvalue according to whether T is rvalue or lvalue; typically
|
||||
/// used for forwarding a container's elements.
|
||||
template <typename T, typename U>
|
||||
forwarded_type<T, U> forward_like(U &&u) {
|
||||
return std::forward<detail::forwarded_type<T, U>>(std::forward<U>(u));
|
||||
}
|
||||
|
||||
template <typename Type, typename Key> struct set_caster {
|
||||
using type = Type;
|
||||
using key_conv = make_caster<Key>;
|
||||
|
||||
bool load(handle src, bool convert) {
|
||||
if (!isinstance<pybind11::set>(src))
|
||||
return false;
|
||||
auto s = reinterpret_borrow<pybind11::set>(src);
|
||||
value.clear();
|
||||
for (auto entry : s) {
|
||||
key_conv conv;
|
||||
if (!conv.load(entry, convert))
|
||||
return false;
|
||||
value.insert(cast_op<Key &&>(std::move(conv)));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static handle cast(T &&src, return_value_policy policy, handle parent) {
|
||||
if (!std::is_lvalue_reference<T>::value)
|
||||
policy = return_value_policy_override<Key>::policy(policy);
|
||||
pybind11::set s;
|
||||
for (auto &&value : src) {
|
||||
auto value_ = reinterpret_steal<object>(key_conv::cast(forward_like<T>(value), policy, parent));
|
||||
if (!value_ || !s.add(value_))
|
||||
return handle();
|
||||
}
|
||||
return s.release();
|
||||
}
|
||||
|
||||
PYBIND11_TYPE_CASTER(type, _("Set[") + key_conv::name + _("]"));
|
||||
};
|
||||
|
||||
template <typename Type, typename Key, typename Value> struct map_caster {
|
||||
using key_conv = make_caster<Key>;
|
||||
using value_conv = make_caster<Value>;
|
||||
|
||||
bool load(handle src, bool convert) {
|
||||
if (!isinstance<dict>(src))
|
||||
return false;
|
||||
auto d = reinterpret_borrow<dict>(src);
|
||||
value.clear();
|
||||
for (auto it : d) {
|
||||
key_conv kconv;
|
||||
value_conv vconv;
|
||||
if (!kconv.load(it.first.ptr(), convert) ||
|
||||
!vconv.load(it.second.ptr(), convert))
|
||||
return false;
|
||||
value.emplace(cast_op<Key &&>(std::move(kconv)), cast_op<Value &&>(std::move(vconv)));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static handle cast(T &&src, return_value_policy policy, handle parent) {
|
||||
dict d;
|
||||
return_value_policy policy_key = policy;
|
||||
return_value_policy policy_value = policy;
|
||||
if (!std::is_lvalue_reference<T>::value) {
|
||||
policy_key = return_value_policy_override<Key>::policy(policy_key);
|
||||
policy_value = return_value_policy_override<Value>::policy(policy_value);
|
||||
}
|
||||
for (auto &&kv : src) {
|
||||
auto key = reinterpret_steal<object>(key_conv::cast(forward_like<T>(kv.first), policy_key, parent));
|
||||
auto value = reinterpret_steal<object>(value_conv::cast(forward_like<T>(kv.second), policy_value, parent));
|
||||
if (!key || !value)
|
||||
return handle();
|
||||
d[key] = value;
|
||||
}
|
||||
return d.release();
|
||||
}
|
||||
|
||||
PYBIND11_TYPE_CASTER(Type, _("Dict[") + key_conv::name + _(", ") + value_conv::name + _("]"));
|
||||
};
|
||||
|
||||
template <typename Type, typename Value> struct list_caster {
|
||||
using value_conv = make_caster<Value>;
|
||||
|
||||
bool load(handle src, bool convert) {
|
||||
if (!isinstance<sequence>(src) || isinstance<str>(src))
|
||||
return false;
|
||||
auto s = reinterpret_borrow<sequence>(src);
|
||||
value.clear();
|
||||
reserve_maybe(s, &value);
|
||||
for (auto it : s) {
|
||||
value_conv conv;
|
||||
if (!conv.load(it, convert))
|
||||
return false;
|
||||
value.push_back(cast_op<Value &&>(std::move(conv)));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
private:
|
||||
template <typename T = Type,
|
||||
enable_if_t<std::is_same<decltype(std::declval<T>().reserve(0)), void>::value, int> = 0>
|
||||
void reserve_maybe(sequence s, Type *) { value.reserve(s.size()); }
|
||||
void reserve_maybe(sequence, void *) { }
|
||||
|
||||
public:
|
||||
template <typename T>
|
||||
static handle cast(T &&src, return_value_policy policy, handle parent) {
|
||||
if (!std::is_lvalue_reference<T>::value)
|
||||
policy = return_value_policy_override<Value>::policy(policy);
|
||||
list l(src.size());
|
||||
size_t index = 0;
|
||||
for (auto &&value : src) {
|
||||
auto value_ = reinterpret_steal<object>(value_conv::cast(forward_like<T>(value), policy, parent));
|
||||
if (!value_)
|
||||
return handle();
|
||||
PyList_SET_ITEM(l.ptr(), (ssize_t) index++, value_.release().ptr()); // steals a reference
|
||||
}
|
||||
return l.release();
|
||||
}
|
||||
|
||||
PYBIND11_TYPE_CASTER(Type, _("List[") + value_conv::name + _("]"));
|
||||
};
|
||||
|
||||
template <typename Type, typename Alloc> struct type_caster<std::vector<Type, Alloc>>
|
||||
: list_caster<std::vector<Type, Alloc>, Type> { };
|
||||
|
||||
template <typename Type, typename Alloc> struct type_caster<std::deque<Type, Alloc>>
|
||||
: list_caster<std::deque<Type, Alloc>, Type> { };
|
||||
|
||||
template <typename Type, typename Alloc> struct type_caster<std::list<Type, Alloc>>
|
||||
: list_caster<std::list<Type, Alloc>, Type> { };
|
||||
|
||||
template <typename ArrayType, typename Value, bool Resizable, size_t Size = 0> struct array_caster {
|
||||
using value_conv = make_caster<Value>;
|
||||
|
||||
private:
|
||||
template <bool R = Resizable>
|
||||
bool require_size(enable_if_t<R, size_t> size) {
|
||||
if (value.size() != size)
|
||||
value.resize(size);
|
||||
return true;
|
||||
}
|
||||
template <bool R = Resizable>
|
||||
bool require_size(enable_if_t<!R, size_t> size) {
|
||||
return size == Size;
|
||||
}
|
||||
|
||||
public:
|
||||
bool load(handle src, bool convert) {
|
||||
if (!isinstance<sequence>(src))
|
||||
return false;
|
||||
auto l = reinterpret_borrow<sequence>(src);
|
||||
if (!require_size(l.size()))
|
||||
return false;
|
||||
size_t ctr = 0;
|
||||
for (auto it : l) {
|
||||
value_conv conv;
|
||||
if (!conv.load(it, convert))
|
||||
return false;
|
||||
value[ctr++] = cast_op<Value &&>(std::move(conv));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static handle cast(T &&src, return_value_policy policy, handle parent) {
|
||||
list l(src.size());
|
||||
size_t index = 0;
|
||||
for (auto &&value : src) {
|
||||
auto value_ = reinterpret_steal<object>(value_conv::cast(forward_like<T>(value), policy, parent));
|
||||
if (!value_)
|
||||
return handle();
|
||||
PyList_SET_ITEM(l.ptr(), (ssize_t) index++, value_.release().ptr()); // steals a reference
|
||||
}
|
||||
return l.release();
|
||||
}
|
||||
|
||||
PYBIND11_TYPE_CASTER(ArrayType, _("List[") + value_conv::name + _<Resizable>(_(""), _("[") + _<Size>() + _("]")) + _("]"));
|
||||
};
|
||||
|
||||
template <typename Type, size_t Size> struct type_caster<std::array<Type, Size>>
|
||||
: array_caster<std::array<Type, Size>, Type, false, Size> { };
|
||||
|
||||
template <typename Type> struct type_caster<std::valarray<Type>>
|
||||
: array_caster<std::valarray<Type>, Type, true> { };
|
||||
|
||||
template <typename Key, typename Compare, typename Alloc> struct type_caster<std::set<Key, Compare, Alloc>>
|
||||
: set_caster<std::set<Key, Compare, Alloc>, Key> { };
|
||||
|
||||
template <typename Key, typename Hash, typename Equal, typename Alloc> struct type_caster<std::unordered_set<Key, Hash, Equal, Alloc>>
|
||||
: set_caster<std::unordered_set<Key, Hash, Equal, Alloc>, Key> { };
|
||||
|
||||
template <typename Key, typename Value, typename Compare, typename Alloc> struct type_caster<std::map<Key, Value, Compare, Alloc>>
|
||||
: map_caster<std::map<Key, Value, Compare, Alloc>, Key, Value> { };
|
||||
|
||||
template <typename Key, typename Value, typename Hash, typename Equal, typename Alloc> struct type_caster<std::unordered_map<Key, Value, Hash, Equal, Alloc>>
|
||||
: map_caster<std::unordered_map<Key, Value, Hash, Equal, Alloc>, Key, Value> { };
|
||||
|
||||
// This type caster is intended to be used for std::optional and std::experimental::optional
|
||||
template<typename T> struct optional_caster {
|
||||
using value_conv = make_caster<typename T::value_type>;
|
||||
|
||||
template <typename T_>
|
||||
static handle cast(T_ &&src, return_value_policy policy, handle parent) {
|
||||
if (!src)
|
||||
return none().inc_ref();
|
||||
policy = return_value_policy_override<typename T::value_type>::policy(policy);
|
||||
return value_conv::cast(*std::forward<T_>(src), policy, parent);
|
||||
}
|
||||
|
||||
bool load(handle src, bool convert) {
|
||||
if (!src) {
|
||||
return false;
|
||||
} else if (src.is_none()) {
|
||||
return true; // default-constructed value is already empty
|
||||
}
|
||||
value_conv inner_caster;
|
||||
if (!inner_caster.load(src, convert))
|
||||
return false;
|
||||
|
||||
value.emplace(cast_op<typename T::value_type &&>(std::move(inner_caster)));
|
||||
return true;
|
||||
}
|
||||
|
||||
PYBIND11_TYPE_CASTER(T, _("Optional[") + value_conv::name + _("]"));
|
||||
};
|
||||
|
||||
#if PYBIND11_HAS_OPTIONAL
|
||||
template<typename T> struct type_caster<std::optional<T>>
|
||||
: public optional_caster<std::optional<T>> {};
|
||||
|
||||
template<> struct type_caster<std::nullopt_t>
|
||||
: public void_caster<std::nullopt_t> {};
|
||||
#endif
|
||||
|
||||
#if PYBIND11_HAS_EXP_OPTIONAL
|
||||
template<typename T> struct type_caster<std::experimental::optional<T>>
|
||||
: public optional_caster<std::experimental::optional<T>> {};
|
||||
|
||||
template<> struct type_caster<std::experimental::nullopt_t>
|
||||
: public void_caster<std::experimental::nullopt_t> {};
|
||||
#endif
|
||||
|
||||
/// Visit a variant and cast any found type to Python
|
||||
struct variant_caster_visitor {
|
||||
return_value_policy policy;
|
||||
handle parent;
|
||||
|
||||
using result_type = handle; // required by boost::variant in C++11
|
||||
|
||||
template <typename T>
|
||||
result_type operator()(T &&src) const {
|
||||
return make_caster<T>::cast(std::forward<T>(src), policy, parent);
|
||||
}
|
||||
};
|
||||
|
||||
/// Helper class which abstracts away variant's `visit` function. `std::variant` and similar
|
||||
/// `namespace::variant` types which provide a `namespace::visit()` function are handled here
|
||||
/// automatically using argument-dependent lookup. Users can provide specializations for other
|
||||
/// variant-like classes, e.g. `boost::variant` and `boost::apply_visitor`.
|
||||
template <template<typename...> class Variant>
|
||||
struct visit_helper {
|
||||
template <typename... Args>
|
||||
static auto call(Args &&...args) -> decltype(visit(std::forward<Args>(args)...)) {
|
||||
return visit(std::forward<Args>(args)...);
|
||||
}
|
||||
};
|
||||
|
||||
/// Generic variant caster
|
||||
template <typename Variant> struct variant_caster;
|
||||
|
||||
template <template<typename...> class V, typename... Ts>
|
||||
struct variant_caster<V<Ts...>> {
|
||||
static_assert(sizeof...(Ts) > 0, "Variant must consist of at least one alternative.");
|
||||
|
||||
template <typename U, typename... Us>
|
||||
bool load_alternative(handle src, bool convert, type_list<U, Us...>) {
|
||||
auto caster = make_caster<U>();
|
||||
if (caster.load(src, convert)) {
|
||||
value = cast_op<U>(caster);
|
||||
return true;
|
||||
}
|
||||
return load_alternative(src, convert, type_list<Us...>{});
|
||||
}
|
||||
|
||||
bool load_alternative(handle, bool, type_list<>) { return false; }
|
||||
|
||||
bool load(handle src, bool convert) {
|
||||
// Do a first pass without conversions to improve constructor resolution.
|
||||
// E.g. `py::int_(1).cast<variant<double, int>>()` needs to fill the `int`
|
||||
// slot of the variant. Without two-pass loading `double` would be filled
|
||||
// because it appears first and a conversion is possible.
|
||||
if (convert && load_alternative(src, false, type_list<Ts...>{}))
|
||||
return true;
|
||||
return load_alternative(src, convert, type_list<Ts...>{});
|
||||
}
|
||||
|
||||
template <typename Variant>
|
||||
static handle cast(Variant &&src, return_value_policy policy, handle parent) {
|
||||
return visit_helper<V>::call(variant_caster_visitor{policy, parent},
|
||||
std::forward<Variant>(src));
|
||||
}
|
||||
|
||||
using Type = V<Ts...>;
|
||||
PYBIND11_TYPE_CASTER(Type, _("Union[") + detail::concat(make_caster<Ts>::name...) + _("]"));
|
||||
};
|
||||
|
||||
#if PYBIND11_HAS_VARIANT
|
||||
template <typename... Ts>
|
||||
struct type_caster<std::variant<Ts...>> : variant_caster<std::variant<Ts...>> { };
|
||||
#endif
|
||||
|
||||
NAMESPACE_END(detail)
|
||||
|
||||
inline std::ostream &operator<<(std::ostream &os, const handle &obj) {
|
||||
os << (std::string) str(obj);
|
||||
return os;
|
||||
}
|
||||
|
||||
NAMESPACE_END(PYBIND11_NAMESPACE)
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(pop)
|
||||
#endif
|
630
python/src/pybind11/stl_bind.h
Normal file
630
python/src/pybind11/stl_bind.h
Normal file
@@ -0,0 +1,630 @@
|
||||
/*
|
||||
pybind11/std_bind.h: Binding generators for STL data types
|
||||
|
||||
Copyright (c) 2016 Sergey Lyskov and Wenzel Jakob
|
||||
|
||||
All rights reserved. Use of this source code is governed by a
|
||||
BSD-style license that can be found in the LICENSE file.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "detail/common.h"
|
||||
#include "operators.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <sstream>
|
||||
|
||||
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
|
||||
NAMESPACE_BEGIN(detail)
|
||||
|
||||
/* SFINAE helper class used by 'is_comparable */
|
||||
template <typename T> struct container_traits {
|
||||
template <typename T2> static std::true_type test_comparable(decltype(std::declval<const T2 &>() == std::declval<const T2 &>())*);
|
||||
template <typename T2> static std::false_type test_comparable(...);
|
||||
template <typename T2> static std::true_type test_value(typename T2::value_type *);
|
||||
template <typename T2> static std::false_type test_value(...);
|
||||
template <typename T2> static std::true_type test_pair(typename T2::first_type *, typename T2::second_type *);
|
||||
template <typename T2> static std::false_type test_pair(...);
|
||||
|
||||
static constexpr const bool is_comparable = std::is_same<std::true_type, decltype(test_comparable<T>(nullptr))>::value;
|
||||
static constexpr const bool is_pair = std::is_same<std::true_type, decltype(test_pair<T>(nullptr, nullptr))>::value;
|
||||
static constexpr const bool is_vector = std::is_same<std::true_type, decltype(test_value<T>(nullptr))>::value;
|
||||
static constexpr const bool is_element = !is_pair && !is_vector;
|
||||
};
|
||||
|
||||
/* Default: is_comparable -> std::false_type */
|
||||
template <typename T, typename SFINAE = void>
|
||||
struct is_comparable : std::false_type { };
|
||||
|
||||
/* For non-map data structures, check whether operator== can be instantiated */
|
||||
template <typename T>
|
||||
struct is_comparable<
|
||||
T, enable_if_t<container_traits<T>::is_element &&
|
||||
container_traits<T>::is_comparable>>
|
||||
: std::true_type { };
|
||||
|
||||
/* For a vector/map data structure, recursively check the value type (which is std::pair for maps) */
|
||||
template <typename T>
|
||||
struct is_comparable<T, enable_if_t<container_traits<T>::is_vector>> {
|
||||
static constexpr const bool value =
|
||||
is_comparable<typename T::value_type>::value;
|
||||
};
|
||||
|
||||
/* For pairs, recursively check the two data types */
|
||||
template <typename T>
|
||||
struct is_comparable<T, enable_if_t<container_traits<T>::is_pair>> {
|
||||
static constexpr const bool value =
|
||||
is_comparable<typename T::first_type>::value &&
|
||||
is_comparable<typename T::second_type>::value;
|
||||
};
|
||||
|
||||
/* Fallback functions */
|
||||
template <typename, typename, typename... Args> void vector_if_copy_constructible(const Args &...) { }
|
||||
template <typename, typename, typename... Args> void vector_if_equal_operator(const Args &...) { }
|
||||
template <typename, typename, typename... Args> void vector_if_insertion_operator(const Args &...) { }
|
||||
template <typename, typename, typename... Args> void vector_modifiers(const Args &...) { }
|
||||
|
||||
template<typename Vector, typename Class_>
|
||||
void vector_if_copy_constructible(enable_if_t<is_copy_constructible<Vector>::value, Class_> &cl) {
|
||||
cl.def(init<const Vector &>(), "Copy constructor");
|
||||
}
|
||||
|
||||
template<typename Vector, typename Class_>
|
||||
void vector_if_equal_operator(enable_if_t<is_comparable<Vector>::value, Class_> &cl) {
|
||||
using T = typename Vector::value_type;
|
||||
|
||||
cl.def(self == self);
|
||||
cl.def(self != self);
|
||||
|
||||
cl.def("count",
|
||||
[](const Vector &v, const T &x) {
|
||||
return std::count(v.begin(), v.end(), x);
|
||||
},
|
||||
arg("x"),
|
||||
"Return the number of times ``x`` appears in the list"
|
||||
);
|
||||
|
||||
cl.def("remove", [](Vector &v, const T &x) {
|
||||
auto p = std::find(v.begin(), v.end(), x);
|
||||
if (p != v.end())
|
||||
v.erase(p);
|
||||
else
|
||||
throw value_error();
|
||||
},
|
||||
arg("x"),
|
||||
"Remove the first item from the list whose value is x. "
|
||||
"It is an error if there is no such item."
|
||||
);
|
||||
|
||||
cl.def("__contains__",
|
||||
[](const Vector &v, const T &x) {
|
||||
return std::find(v.begin(), v.end(), x) != v.end();
|
||||
},
|
||||
arg("x"),
|
||||
"Return true the container contains ``x``"
|
||||
);
|
||||
}
|
||||
|
||||
// Vector modifiers -- requires a copyable vector_type:
|
||||
// (Technically, some of these (pop and __delitem__) don't actually require copyability, but it seems
|
||||
// silly to allow deletion but not insertion, so include them here too.)
|
||||
template <typename Vector, typename Class_>
|
||||
void vector_modifiers(enable_if_t<is_copy_constructible<typename Vector::value_type>::value, Class_> &cl) {
|
||||
using T = typename Vector::value_type;
|
||||
using SizeType = typename Vector::size_type;
|
||||
using DiffType = typename Vector::difference_type;
|
||||
|
||||
cl.def("append",
|
||||
[](Vector &v, const T &value) { v.push_back(value); },
|
||||
arg("x"),
|
||||
"Add an item to the end of the list");
|
||||
|
||||
cl.def(init([](iterable it) {
|
||||
auto v = std::unique_ptr<Vector>(new Vector());
|
||||
v->reserve(len_hint(it));
|
||||
for (handle h : it)
|
||||
v->push_back(h.cast<T>());
|
||||
return v.release();
|
||||
}));
|
||||
|
||||
cl.def("extend",
|
||||
[](Vector &v, const Vector &src) {
|
||||
v.insert(v.end(), src.begin(), src.end());
|
||||
},
|
||||
arg("L"),
|
||||
"Extend the list by appending all the items in the given list"
|
||||
);
|
||||
|
||||
cl.def("extend",
|
||||
[](Vector &v, iterable it) {
|
||||
const size_t old_size = v.size();
|
||||
v.reserve(old_size + len_hint(it));
|
||||
try {
|
||||
for (handle h : it) {
|
||||
v.push_back(h.cast<T>());
|
||||
}
|
||||
} catch (const cast_error &) {
|
||||
v.erase(v.begin() + static_cast<typename Vector::difference_type>(old_size), v.end());
|
||||
try {
|
||||
v.shrink_to_fit();
|
||||
} catch (const std::exception &) {
|
||||
// Do nothing
|
||||
}
|
||||
throw;
|
||||
}
|
||||
},
|
||||
arg("L"),
|
||||
"Extend the list by appending all the items in the given list"
|
||||
);
|
||||
|
||||
cl.def("insert",
|
||||
[](Vector &v, SizeType i, const T &x) {
|
||||
if (i > v.size())
|
||||
throw index_error();
|
||||
v.insert(v.begin() + (DiffType) i, x);
|
||||
},
|
||||
arg("i") , arg("x"),
|
||||
"Insert an item at a given position."
|
||||
);
|
||||
|
||||
cl.def("pop",
|
||||
[](Vector &v) {
|
||||
if (v.empty())
|
||||
throw index_error();
|
||||
T t = v.back();
|
||||
v.pop_back();
|
||||
return t;
|
||||
},
|
||||
"Remove and return the last item"
|
||||
);
|
||||
|
||||
cl.def("pop",
|
||||
[](Vector &v, SizeType i) {
|
||||
if (i >= v.size())
|
||||
throw index_error();
|
||||
T t = v[i];
|
||||
v.erase(v.begin() + (DiffType) i);
|
||||
return t;
|
||||
},
|
||||
arg("i"),
|
||||
"Remove and return the item at index ``i``"
|
||||
);
|
||||
|
||||
cl.def("__setitem__",
|
||||
[](Vector &v, SizeType i, const T &t) {
|
||||
if (i >= v.size())
|
||||
throw index_error();
|
||||
v[i] = t;
|
||||
}
|
||||
);
|
||||
|
||||
/// Slicing protocol
|
||||
cl.def("__getitem__",
|
||||
[](const Vector &v, slice slice) -> Vector * {
|
||||
size_t start, stop, step, slicelength;
|
||||
|
||||
if (!slice.compute(v.size(), &start, &stop, &step, &slicelength))
|
||||
throw error_already_set();
|
||||
|
||||
Vector *seq = new Vector();
|
||||
seq->reserve((size_t) slicelength);
|
||||
|
||||
for (size_t i=0; i<slicelength; ++i) {
|
||||
seq->push_back(v[start]);
|
||||
start += step;
|
||||
}
|
||||
return seq;
|
||||
},
|
||||
arg("s"),
|
||||
"Retrieve list elements using a slice object"
|
||||
);
|
||||
|
||||
cl.def("__setitem__",
|
||||
[](Vector &v, slice slice, const Vector &value) {
|
||||
size_t start, stop, step, slicelength;
|
||||
if (!slice.compute(v.size(), &start, &stop, &step, &slicelength))
|
||||
throw error_already_set();
|
||||
|
||||
if (slicelength != value.size())
|
||||
throw std::runtime_error("Left and right hand size of slice assignment have different sizes!");
|
||||
|
||||
for (size_t i=0; i<slicelength; ++i) {
|
||||
v[start] = value[i];
|
||||
start += step;
|
||||
}
|
||||
},
|
||||
"Assign list elements using a slice object"
|
||||
);
|
||||
|
||||
cl.def("__delitem__",
|
||||
[](Vector &v, SizeType i) {
|
||||
if (i >= v.size())
|
||||
throw index_error();
|
||||
v.erase(v.begin() + DiffType(i));
|
||||
},
|
||||
"Delete the list elements at index ``i``"
|
||||
);
|
||||
|
||||
cl.def("__delitem__",
|
||||
[](Vector &v, slice slice) {
|
||||
size_t start, stop, step, slicelength;
|
||||
|
||||
if (!slice.compute(v.size(), &start, &stop, &step, &slicelength))
|
||||
throw error_already_set();
|
||||
|
||||
if (step == 1 && false) {
|
||||
v.erase(v.begin() + (DiffType) start, v.begin() + DiffType(start + slicelength));
|
||||
} else {
|
||||
for (size_t i = 0; i < slicelength; ++i) {
|
||||
v.erase(v.begin() + DiffType(start));
|
||||
start += step - 1;
|
||||
}
|
||||
}
|
||||
},
|
||||
"Delete list elements using a slice object"
|
||||
);
|
||||
|
||||
}
|
||||
|
||||
// If the type has an operator[] that doesn't return a reference (most notably std::vector<bool>),
|
||||
// we have to access by copying; otherwise we return by reference.
|
||||
template <typename Vector> using vector_needs_copy = negation<
|
||||
std::is_same<decltype(std::declval<Vector>()[typename Vector::size_type()]), typename Vector::value_type &>>;
|
||||
|
||||
// The usual case: access and iterate by reference
|
||||
template <typename Vector, typename Class_>
|
||||
void vector_accessor(enable_if_t<!vector_needs_copy<Vector>::value, Class_> &cl) {
|
||||
using T = typename Vector::value_type;
|
||||
using SizeType = typename Vector::size_type;
|
||||
using ItType = typename Vector::iterator;
|
||||
|
||||
cl.def("__getitem__",
|
||||
[](Vector &v, SizeType i) -> T & {
|
||||
if (i >= v.size())
|
||||
throw index_error();
|
||||
return v[i];
|
||||
},
|
||||
return_value_policy::reference_internal // ref + keepalive
|
||||
);
|
||||
|
||||
cl.def("__iter__",
|
||||
[](Vector &v) {
|
||||
return make_iterator<
|
||||
return_value_policy::reference_internal, ItType, ItType, T&>(
|
||||
v.begin(), v.end());
|
||||
},
|
||||
keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
|
||||
);
|
||||
}
|
||||
|
||||
// The case for special objects, like std::vector<bool>, that have to be returned-by-copy:
|
||||
template <typename Vector, typename Class_>
|
||||
void vector_accessor(enable_if_t<vector_needs_copy<Vector>::value, Class_> &cl) {
|
||||
using T = typename Vector::value_type;
|
||||
using SizeType = typename Vector::size_type;
|
||||
using ItType = typename Vector::iterator;
|
||||
cl.def("__getitem__",
|
||||
[](const Vector &v, SizeType i) -> T {
|
||||
if (i >= v.size())
|
||||
throw index_error();
|
||||
return v[i];
|
||||
}
|
||||
);
|
||||
|
||||
cl.def("__iter__",
|
||||
[](Vector &v) {
|
||||
return make_iterator<
|
||||
return_value_policy::copy, ItType, ItType, T>(
|
||||
v.begin(), v.end());
|
||||
},
|
||||
keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
|
||||
);
|
||||
}
|
||||
|
||||
template <typename Vector, typename Class_> auto vector_if_insertion_operator(Class_ &cl, std::string const &name)
|
||||
-> decltype(std::declval<std::ostream&>() << std::declval<typename Vector::value_type>(), void()) {
|
||||
using size_type = typename Vector::size_type;
|
||||
|
||||
cl.def("__repr__",
|
||||
[name](Vector &v) {
|
||||
std::ostringstream s;
|
||||
s << name << '[';
|
||||
for (size_type i=0; i < v.size(); ++i) {
|
||||
s << v[i];
|
||||
if (i != v.size() - 1)
|
||||
s << ", ";
|
||||
}
|
||||
s << ']';
|
||||
return s.str();
|
||||
},
|
||||
"Return the canonical string representation of this list."
|
||||
);
|
||||
}
|
||||
|
||||
// Provide the buffer interface for vectors if we have data() and we have a format for it
|
||||
// GCC seems to have "void std::vector<bool>::data()" - doing SFINAE on the existence of data() is insufficient, we need to check it returns an appropriate pointer
|
||||
template <typename Vector, typename = void>
|
||||
struct vector_has_data_and_format : std::false_type {};
|
||||
template <typename Vector>
|
||||
struct vector_has_data_and_format<Vector, enable_if_t<std::is_same<decltype(format_descriptor<typename Vector::value_type>::format(), std::declval<Vector>().data()), typename Vector::value_type*>::value>> : std::true_type {};
|
||||
|
||||
// Add the buffer interface to a vector
|
||||
template <typename Vector, typename Class_, typename... Args>
|
||||
enable_if_t<detail::any_of<std::is_same<Args, buffer_protocol>...>::value>
|
||||
vector_buffer(Class_& cl) {
|
||||
using T = typename Vector::value_type;
|
||||
|
||||
static_assert(vector_has_data_and_format<Vector>::value, "There is not an appropriate format descriptor for this vector");
|
||||
|
||||
// numpy.h declares this for arbitrary types, but it may raise an exception and crash hard at runtime if PYBIND11_NUMPY_DTYPE hasn't been called, so check here
|
||||
format_descriptor<T>::format();
|
||||
|
||||
cl.def_buffer([](Vector& v) -> buffer_info {
|
||||
return buffer_info(v.data(), static_cast<ssize_t>(sizeof(T)), format_descriptor<T>::format(), 1, {v.size()}, {sizeof(T)});
|
||||
});
|
||||
|
||||
cl.def(init([](buffer buf) {
|
||||
auto info = buf.request();
|
||||
if (info.ndim != 1 || info.strides[0] % static_cast<ssize_t>(sizeof(T)))
|
||||
throw type_error("Only valid 1D buffers can be copied to a vector");
|
||||
if (!detail::compare_buffer_info<T>::compare(info) || (ssize_t) sizeof(T) != info.itemsize)
|
||||
throw type_error("Format mismatch (Python: " + info.format + " C++: " + format_descriptor<T>::format() + ")");
|
||||
|
||||
auto vec = std::unique_ptr<Vector>(new Vector());
|
||||
vec->reserve((size_t) info.shape[0]);
|
||||
T *p = static_cast<T*>(info.ptr);
|
||||
ssize_t step = info.strides[0] / static_cast<ssize_t>(sizeof(T));
|
||||
T *end = p + info.shape[0] * step;
|
||||
for (; p != end; p += step)
|
||||
vec->push_back(*p);
|
||||
return vec.release();
|
||||
}));
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
template <typename Vector, typename Class_, typename... Args>
|
||||
enable_if_t<!detail::any_of<std::is_same<Args, buffer_protocol>...>::value> vector_buffer(Class_&) {}
|
||||
|
||||
NAMESPACE_END(detail)
|
||||
|
||||
//
|
||||
// std::vector
|
||||
//
|
||||
template <typename Vector, typename holder_type = std::unique_ptr<Vector>, typename... Args>
|
||||
class_<Vector, holder_type> bind_vector(handle scope, std::string const &name, Args&&... args) {
|
||||
using Class_ = class_<Vector, holder_type>;
|
||||
|
||||
// If the value_type is unregistered (e.g. a converting type) or is itself registered
|
||||
// module-local then make the vector binding module-local as well:
|
||||
using vtype = typename Vector::value_type;
|
||||
auto vtype_info = detail::get_type_info(typeid(vtype));
|
||||
bool local = !vtype_info || vtype_info->module_local;
|
||||
|
||||
Class_ cl(scope, name.c_str(), pybind11::module_local(local), std::forward<Args>(args)...);
|
||||
|
||||
// Declare the buffer interface if a buffer_protocol() is passed in
|
||||
detail::vector_buffer<Vector, Class_, Args...>(cl);
|
||||
|
||||
cl.def(init<>());
|
||||
|
||||
// Register copy constructor (if possible)
|
||||
detail::vector_if_copy_constructible<Vector, Class_>(cl);
|
||||
|
||||
// Register comparison-related operators and functions (if possible)
|
||||
detail::vector_if_equal_operator<Vector, Class_>(cl);
|
||||
|
||||
// Register stream insertion operator (if possible)
|
||||
detail::vector_if_insertion_operator<Vector, Class_>(cl, name);
|
||||
|
||||
// Modifiers require copyable vector value type
|
||||
detail::vector_modifiers<Vector, Class_>(cl);
|
||||
|
||||
// Accessor and iterator; return by value if copyable, otherwise we return by ref + keep-alive
|
||||
detail::vector_accessor<Vector, Class_>(cl);
|
||||
|
||||
cl.def("__bool__",
|
||||
[](const Vector &v) -> bool {
|
||||
return !v.empty();
|
||||
},
|
||||
"Check whether the list is nonempty"
|
||||
);
|
||||
|
||||
cl.def("__len__", &Vector::size);
|
||||
|
||||
|
||||
|
||||
|
||||
#if 0
|
||||
// C++ style functions deprecated, leaving it here as an example
|
||||
cl.def(init<size_type>());
|
||||
|
||||
cl.def("resize",
|
||||
(void (Vector::*) (size_type count)) & Vector::resize,
|
||||
"changes the number of elements stored");
|
||||
|
||||
cl.def("erase",
|
||||
[](Vector &v, SizeType i) {
|
||||
if (i >= v.size())
|
||||
throw index_error();
|
||||
v.erase(v.begin() + i);
|
||||
}, "erases element at index ``i``");
|
||||
|
||||
cl.def("empty", &Vector::empty, "checks whether the container is empty");
|
||||
cl.def("size", &Vector::size, "returns the number of elements");
|
||||
cl.def("push_back", (void (Vector::*)(const T&)) &Vector::push_back, "adds an element to the end");
|
||||
cl.def("pop_back", &Vector::pop_back, "removes the last element");
|
||||
|
||||
cl.def("max_size", &Vector::max_size, "returns the maximum possible number of elements");
|
||||
cl.def("reserve", &Vector::reserve, "reserves storage");
|
||||
cl.def("capacity", &Vector::capacity, "returns the number of elements that can be held in currently allocated storage");
|
||||
cl.def("shrink_to_fit", &Vector::shrink_to_fit, "reduces memory usage by freeing unused memory");
|
||||
|
||||
cl.def("clear", &Vector::clear, "clears the contents");
|
||||
cl.def("swap", &Vector::swap, "swaps the contents");
|
||||
|
||||
cl.def("front", [](Vector &v) {
|
||||
if (v.size()) return v.front();
|
||||
else throw index_error();
|
||||
}, "access the first element");
|
||||
|
||||
cl.def("back", [](Vector &v) {
|
||||
if (v.size()) return v.back();
|
||||
else throw index_error();
|
||||
}, "access the last element ");
|
||||
|
||||
#endif
|
||||
|
||||
return cl;
|
||||
}
|
||||
|
||||
|
||||
|
||||
//
|
||||
// std::map, std::unordered_map
|
||||
//
|
||||
|
||||
NAMESPACE_BEGIN(detail)
|
||||
|
||||
/* Fallback functions */
|
||||
template <typename, typename, typename... Args> void map_if_insertion_operator(const Args &...) { }
|
||||
template <typename, typename, typename... Args> void map_assignment(const Args &...) { }
|
||||
|
||||
// Map assignment when copy-assignable: just copy the value
|
||||
template <typename Map, typename Class_>
|
||||
void map_assignment(enable_if_t<std::is_copy_assignable<typename Map::mapped_type>::value, Class_> &cl) {
|
||||
using KeyType = typename Map::key_type;
|
||||
using MappedType = typename Map::mapped_type;
|
||||
|
||||
cl.def("__setitem__",
|
||||
[](Map &m, const KeyType &k, const MappedType &v) {
|
||||
auto it = m.find(k);
|
||||
if (it != m.end()) it->second = v;
|
||||
else m.emplace(k, v);
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
// Not copy-assignable, but still copy-constructible: we can update the value by erasing and reinserting
|
||||
template<typename Map, typename Class_>
|
||||
void map_assignment(enable_if_t<
|
||||
!std::is_copy_assignable<typename Map::mapped_type>::value &&
|
||||
is_copy_constructible<typename Map::mapped_type>::value,
|
||||
Class_> &cl) {
|
||||
using KeyType = typename Map::key_type;
|
||||
using MappedType = typename Map::mapped_type;
|
||||
|
||||
cl.def("__setitem__",
|
||||
[](Map &m, const KeyType &k, const MappedType &v) {
|
||||
// We can't use m[k] = v; because value type might not be default constructable
|
||||
auto r = m.emplace(k, v);
|
||||
if (!r.second) {
|
||||
// value type is not copy assignable so the only way to insert it is to erase it first...
|
||||
m.erase(r.first);
|
||||
m.emplace(k, v);
|
||||
}
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
template <typename Map, typename Class_> auto map_if_insertion_operator(Class_ &cl, std::string const &name)
|
||||
-> decltype(std::declval<std::ostream&>() << std::declval<typename Map::key_type>() << std::declval<typename Map::mapped_type>(), void()) {
|
||||
|
||||
cl.def("__repr__",
|
||||
[name](Map &m) {
|
||||
std::ostringstream s;
|
||||
s << name << '{';
|
||||
bool f = false;
|
||||
for (auto const &kv : m) {
|
||||
if (f)
|
||||
s << ", ";
|
||||
s << kv.first << ": " << kv.second;
|
||||
f = true;
|
||||
}
|
||||
s << '}';
|
||||
return s.str();
|
||||
},
|
||||
"Return the canonical string representation of this map."
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_END(detail)
|
||||
|
||||
template <typename Map, typename holder_type = std::unique_ptr<Map>, typename... Args>
|
||||
class_<Map, holder_type> bind_map(handle scope, const std::string &name, Args&&... args) {
|
||||
using KeyType = typename Map::key_type;
|
||||
using MappedType = typename Map::mapped_type;
|
||||
using Class_ = class_<Map, holder_type>;
|
||||
|
||||
// If either type is a non-module-local bound type then make the map binding non-local as well;
|
||||
// otherwise (e.g. both types are either module-local or converting) the map will be
|
||||
// module-local.
|
||||
auto tinfo = detail::get_type_info(typeid(MappedType));
|
||||
bool local = !tinfo || tinfo->module_local;
|
||||
if (local) {
|
||||
tinfo = detail::get_type_info(typeid(KeyType));
|
||||
local = !tinfo || tinfo->module_local;
|
||||
}
|
||||
|
||||
Class_ cl(scope, name.c_str(), pybind11::module_local(local), std::forward<Args>(args)...);
|
||||
|
||||
cl.def(init<>());
|
||||
|
||||
// Register stream insertion operator (if possible)
|
||||
detail::map_if_insertion_operator<Map, Class_>(cl, name);
|
||||
|
||||
cl.def("__bool__",
|
||||
[](const Map &m) -> bool { return !m.empty(); },
|
||||
"Check whether the map is nonempty"
|
||||
);
|
||||
|
||||
cl.def("__iter__",
|
||||
[](Map &m) { return make_key_iterator(m.begin(), m.end()); },
|
||||
keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
|
||||
);
|
||||
|
||||
cl.def("items",
|
||||
[](Map &m) { return make_iterator(m.begin(), m.end()); },
|
||||
keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
|
||||
);
|
||||
|
||||
cl.def("__getitem__",
|
||||
[](Map &m, const KeyType &k) -> MappedType & {
|
||||
auto it = m.find(k);
|
||||
if (it == m.end())
|
||||
throw key_error();
|
||||
return it->second;
|
||||
},
|
||||
return_value_policy::reference_internal // ref + keepalive
|
||||
);
|
||||
|
||||
cl.def("__contains__",
|
||||
[](Map &m, const KeyType &k) -> bool {
|
||||
auto it = m.find(k);
|
||||
if (it == m.end())
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
);
|
||||
|
||||
// Assignment provided only if the type is copyable
|
||||
detail::map_assignment<Map, Class_>(cl);
|
||||
|
||||
cl.def("__delitem__",
|
||||
[](Map &m, const KeyType &k) {
|
||||
auto it = m.find(k);
|
||||
if (it == m.end())
|
||||
throw key_error();
|
||||
m.erase(it);
|
||||
}
|
||||
);
|
||||
|
||||
cl.def("__len__", &Map::size);
|
||||
|
||||
return cl;
|
||||
}
|
||||
|
||||
NAMESPACE_END(PYBIND11_NAMESPACE)
|
1
python/triton/_C/include
Symbolic link
1
python/triton/_C/include
Symbolic link
@@ -0,0 +1 @@
|
||||
../../../include/
|
12
python/triton/__init__.py
Normal file
12
python/triton/__init__.py
Normal file
@@ -0,0 +1,12 @@
|
||||
from .kernel import *
|
||||
from .function import *
|
||||
from .utils import *
|
||||
import triton.ops
|
||||
|
||||
|
||||
# clean-up libtriton resources
|
||||
import atexit
|
||||
import triton._C.libtriton as libtriton
|
||||
@atexit.register
|
||||
def cleanup():
|
||||
libtriton.cleanup()
|
28
python/triton/frameworks.py
Normal file
28
python/triton/frameworks.py
Normal file
@@ -0,0 +1,28 @@
|
||||
import sys
|
||||
import os
|
||||
import triton._C.libtriton as libtriton
|
||||
|
||||
torch = None
|
||||
tensorflow = None
|
||||
|
||||
def _import_torch():
|
||||
global torch
|
||||
if torch is None:
|
||||
import torch
|
||||
|
||||
def _import_tensorflow():
|
||||
global tensorflow
|
||||
if tensorflow is None:
|
||||
import tensorflow
|
||||
|
||||
def has_tensorflow():
|
||||
result = 'tensorflow' in sys.modules
|
||||
if result:
|
||||
_import_tensorflow()
|
||||
return result
|
||||
|
||||
def has_torch():
|
||||
result = 'torch' in sys.modules
|
||||
if result:
|
||||
_import_torch()
|
||||
return result
|
127
python/triton/function.py
Normal file
127
python/triton/function.py
Normal file
@@ -0,0 +1,127 @@
|
||||
import triton.frameworks as fw
|
||||
import triton.utils as utils
|
||||
|
||||
class OpContext(object):
|
||||
|
||||
def __init__(self):
|
||||
self.to_save = []
|
||||
|
||||
def save_for_backward(self, *tensors):
|
||||
self.to_save = [x.to_tensor() if isinstance(x, utils.tf_empty_proxy) else x
|
||||
for x in tensors]
|
||||
|
||||
@property
|
||||
def saved_tensors(self):
|
||||
return self.to_save
|
||||
|
||||
class function_meta(type):
|
||||
|
||||
def __init__(cls, name, bases, attrs):
|
||||
cls.registered = False
|
||||
return super(function_meta, cls).__init__(name, bases, attrs)
|
||||
|
||||
ctx_registry = utils.id_dict()
|
||||
|
||||
class function(metaclass = function_meta):
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
raise NotImplementedError
|
||||
|
||||
@classmethod
|
||||
def apply_torch(cls, *args, **kwargs):
|
||||
class TorchFunction(fw.torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, *targs):
|
||||
y = cls.forward(ctx, *targs, **cls.torch_kwargs)
|
||||
ctx_registry[y] = ctx
|
||||
return y
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
return cls.backward(ctx, grad_output)
|
||||
cls.torch_kwargs = kwargs
|
||||
return TorchFunction.apply(*args)
|
||||
torch_kwargs = 0
|
||||
|
||||
@classmethod
|
||||
def extract_tf_tensors(cls, lst, err):
|
||||
ret = []
|
||||
for x in lst:
|
||||
if x is None:
|
||||
ret += [None]
|
||||
elif isinstance(x, fw.tensorflow.Tensor):
|
||||
ret += [x]
|
||||
elif isinstance(x, utils.tf_empty_proxy):
|
||||
if x.tensor is None:
|
||||
raise ValueError('Empty tensor never filled during ' + err)
|
||||
else:
|
||||
ret += [x.tensor]
|
||||
else:
|
||||
raise ValueError('Unsupported return type', type(x))
|
||||
return ret
|
||||
|
||||
@classmethod
|
||||
def map_in_to_args(cls, op, args):
|
||||
ret = dict()
|
||||
for i, ix in enumerate(op.inputs):
|
||||
for j, jx in enumerate(args):
|
||||
if ix is jx:
|
||||
ret[j] = i
|
||||
return ret
|
||||
|
||||
@classmethod
|
||||
def map_res_to_out(cls, op, result):
|
||||
ret = []
|
||||
for i, ix in enumerate(result):
|
||||
for j, jx in enumerate(op.outputs):
|
||||
if ix is jx:
|
||||
ret.append(j)
|
||||
return ret
|
||||
|
||||
@classmethod
|
||||
def apply_tensorflow(cls, *args, **kwargs):
|
||||
ctx = OpContext()
|
||||
|
||||
# run forward pass
|
||||
result = cls.forward(ctx, *args, **kwargs)
|
||||
result = result if isinstance(result, tuple) else (result, )
|
||||
result = function.extract_tf_tensors(result, 'forward')
|
||||
|
||||
# Register backward pass
|
||||
op = result[0].op
|
||||
ctx_registry[op] = ctx
|
||||
if not cls.registered:
|
||||
remap_in = cls.map_in_to_args(op, args)
|
||||
remap_out = cls.map_res_to_out(op, result)
|
||||
@fw.tensorflow.RegisterGradient(op.op_def.name)
|
||||
def gradient(op, *dy):
|
||||
# Remap gradient inputs in the right order
|
||||
dy = [dy[i] for i in remap_out]
|
||||
dy = dy if len(dy) > 1 else dy[0]
|
||||
# Execute gradient function
|
||||
grad = cls.backward(ctx_registry[op], dy)
|
||||
grad = function.extract_tf_tensors(grad, 'backward')
|
||||
# Remap gradient in the right order
|
||||
ret = [None] * len(op.inputs)
|
||||
for i in range(len(grad)):
|
||||
if i in remap_in:
|
||||
ret[remap_in[i]] = grad[i]
|
||||
# Return
|
||||
return ret
|
||||
cls.registered = True
|
||||
|
||||
# Return tensor
|
||||
return result[0] if len(result)==1 else result
|
||||
|
||||
@classmethod
|
||||
def apply(cls, *args, **kwargs):
|
||||
if fw.has_tensorflow():
|
||||
return cls.apply_tensorflow(*args, **kwargs)
|
||||
elif fw.has_torch():
|
||||
return cls.apply_torch(*args, **kwargs)
|
||||
else:
|
||||
assert False
|
298
python/triton/kernel.py
Normal file
298
python/triton/kernel.py
Normal file
@@ -0,0 +1,298 @@
|
||||
# import for cache
|
||||
import os
|
||||
import tempfile
|
||||
import shutil
|
||||
import hashlib
|
||||
import sysconfig
|
||||
import sys
|
||||
import weakref
|
||||
import contextlib
|
||||
import io
|
||||
# import for just-in-time compilation
|
||||
import distutils
|
||||
import setuptools.command.build_ext
|
||||
import setuptools
|
||||
# triton
|
||||
import triton.frameworks as fw
|
||||
import triton.utils
|
||||
import triton._C.libtriton as libtriton
|
||||
|
||||
def _make_framework_src(src, out, tmp, grid):
|
||||
if fw.has_tensorflow():
|
||||
return libtriton.make_tensorflow_src(src, out, tmp, grid)
|
||||
elif fw.has_torch:
|
||||
return libtriton.make_torch_src(src, out, tmp, grid)
|
||||
else:
|
||||
assert False
|
||||
|
||||
def _make_cache_path(src):
|
||||
md5 = hashlib.sha1(src.encode())
|
||||
hexhash = md5.hexdigest()
|
||||
home = os.path.expanduser('~')
|
||||
cacheroot = os.path.join(home, '.triton', 'cache')
|
||||
cachepath = os.path.join(cacheroot, str(hexhash))
|
||||
if not os.path.exists(cachepath):
|
||||
os.makedirs(cachepath)
|
||||
return cachepath
|
||||
|
||||
def _write_bindings(src, root):
|
||||
if fw.has_tensorflow():
|
||||
name = 'tensorflow'
|
||||
elif fw.has_torch():
|
||||
name = 'torch'
|
||||
else:
|
||||
assert False
|
||||
cpp = os.path.join(root, '{name}.cpp'.format(name=name))
|
||||
suffix = sysconfig.get_config_var('EXT_SUFFIX')
|
||||
so = os.path.join(root, '{name}{suffix}'.format(name=name, suffix=suffix))
|
||||
recompile = False
|
||||
# recompile if .so does not exist
|
||||
if not os.path.exists(cpp) or not os.path.exists(so):
|
||||
recompile = True
|
||||
# recompile if cpp was modified after .so
|
||||
elif max(cpp, so, key=os.path.getctime) == cpp:
|
||||
recompile = True
|
||||
# write cpp file
|
||||
if recompile:
|
||||
with open(cpp, 'w+') as handle:
|
||||
handle.writelines(src)
|
||||
# return path of cpp file
|
||||
return (cpp, so)
|
||||
|
||||
@contextlib.contextmanager
|
||||
def quiet():
|
||||
old_stdout, old_stderr = sys.stdout, sys.stderr
|
||||
sys.stdout, sys.stderr = io.StringIO(), io.StringIO()
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
sys.stdout, sys.stderr = old_stdout, old_stderr
|
||||
|
||||
def _build(src, path):
|
||||
ccdir = os.path.join(libtriton.__file__, os.path.pardir)
|
||||
ccdir = os.path.realpath(ccdir)
|
||||
# include directories
|
||||
triton_include_dirs = [os.path.join(ccdir, 'include')]
|
||||
include_dirs = triton_include_dirs
|
||||
# library directories
|
||||
triton_library_dirs = [ccdir]
|
||||
library_dirs = triton_library_dirs
|
||||
# libraries
|
||||
libraries = ['triton']
|
||||
# add framework
|
||||
extra_compile_args = []
|
||||
if fw.has_tensorflow():
|
||||
library_dirs += [fw.tensorflow.sysconfig.get_lib()]
|
||||
include_dirs += [fw.tensorflow.sysconfig.get_include()]
|
||||
include_dirs += ['/usr/local/cuda/include/']
|
||||
libraries += [fw.tensorflow.sysconfig.get_link_flags()[1].replace('-l', '')]
|
||||
abi = fw.tensorflow.__cxx11_abi_flag__ if "__cxx11_abi_flag__" in fw.tensorflow.__dict__ else 0
|
||||
extra_compile_args += ['-D_GLIBCXX_USE_CXX11_ABI={abi}'.format(abi=abi)]
|
||||
name = 'tensorflow'
|
||||
elif fw.has_torch():
|
||||
prefix = os.path.dirname(fw.torch.__file__)
|
||||
library_dirs += [os.path.join(prefix, 'lib')]
|
||||
include_dirs += ['/usr/local/cuda/include/',
|
||||
os.path.join(prefix, 'lib', 'include'),
|
||||
os.path.join(prefix, 'lib', 'include', 'torch', 'csrc', 'api', 'include'),
|
||||
os.path.join(prefix, 'include'),
|
||||
os.path.join(prefix, 'include', 'torch', 'csrc', 'api', 'include')]
|
||||
libraries += ['torch']
|
||||
abi = fw.torch._C._GLIBCXX_USE_CXX11_ABI
|
||||
extra_compile_args += ['-D_GLIBCXX_USE_CXX11_ABI={abi}'.format(abi=abi)]
|
||||
name = 'torch'
|
||||
else:
|
||||
assert False
|
||||
# extra arguments
|
||||
extra_link_args = []
|
||||
# dependences
|
||||
depends = [os.path.realpath(libtriton.__file__)]
|
||||
# create extension module
|
||||
ext = setuptools.Extension(
|
||||
name = name,
|
||||
language = 'c++',
|
||||
sources = [src],
|
||||
include_dirs = include_dirs,
|
||||
extra_compile_args = extra_compile_args + ['-g0'],
|
||||
extra_link_args = extra_link_args,
|
||||
library_dirs = library_dirs,
|
||||
libraries = libraries,
|
||||
depends = depends
|
||||
)
|
||||
# build extension module
|
||||
args = ['build_ext']
|
||||
tmp = tempfile.mkdtemp()
|
||||
args.append('--build-temp=' + tmp)
|
||||
args.append('--build-lib=' + path)
|
||||
args.append('-q')
|
||||
args = dict(
|
||||
name = name,
|
||||
ext_modules = [ext],
|
||||
script_args = args,
|
||||
)
|
||||
with quiet():
|
||||
setuptools.setup(**args)
|
||||
shutil.rmtree(tmp)
|
||||
|
||||
def _cvt_to_def_str(obj):
|
||||
# bool
|
||||
if isinstance(obj, bool):
|
||||
return str(int(obj))
|
||||
# tensorflow type
|
||||
if fw.has_tensorflow():
|
||||
if isinstance(obj, fw.tensorflow.DType):
|
||||
return {fw.tensorflow.int8: 'char',
|
||||
fw.tensorflow.int16: 'short',
|
||||
fw.tensorflow.int32: 'int',
|
||||
fw.tensorflow.int64: 'long',
|
||||
fw.tensorflow.float16: 'half',
|
||||
fw.tensorflow.float32: 'float',
|
||||
fw.tensorflow.float64: 'double'}[obj]
|
||||
# torch type
|
||||
elif fw.has_torch():
|
||||
if isinstance(obj, fw.torch.dtype):
|
||||
return {fw.torch.int8: 'char',
|
||||
fw.torch.int16: 'short',
|
||||
fw.torch.int32: 'int',
|
||||
fw.torch.int64: 'long',
|
||||
fw.torch.float16: 'half',
|
||||
fw.torch.float32: 'float',
|
||||
fw.torch.float64: 'double'}[obj]
|
||||
else:
|
||||
assert False
|
||||
# default
|
||||
return str(obj)
|
||||
|
||||
|
||||
def _make_framework_op(src, outputs, tmp, options):
|
||||
src, name = _make_framework_src(src, outputs, tmp, options)
|
||||
cache_path = _make_cache_path(src)
|
||||
cpp, so = _write_bindings(src, cache_path)
|
||||
_build(cpp, cache_path)
|
||||
if fw.has_tensorflow():
|
||||
return fw.tensorflow.load_op_library(so).__dict__[name]
|
||||
elif fw.has_torch():
|
||||
fw.torch.ops.load_library(so)
|
||||
return getattr(fw.torch.ops.triton, name)
|
||||
else:
|
||||
assert False
|
||||
|
||||
def _make_grid(grid, args) :
|
||||
scalars = [x for x in args if isinstance(x, triton.utils.scalar)]
|
||||
def grid(opt):
|
||||
for x in scalars:
|
||||
x.set_assume_initialized()
|
||||
result = grid(opt)
|
||||
for x in scalars:
|
||||
x.unset_assume_initialized()
|
||||
return result
|
||||
return grid
|
||||
|
||||
|
||||
bench_registry = triton.utils.id_dict()
|
||||
|
||||
class kernel:
|
||||
|
||||
def __init__(self, src, outputs, tmp=[]):
|
||||
self.fw_id = dict()
|
||||
self.fw_grids = dict()
|
||||
self.fw_op = None
|
||||
self.src = src
|
||||
self.outputs = outputs
|
||||
self.tmp = tmp
|
||||
self.cst = dict()
|
||||
|
||||
def set_constant(self, name, value):
|
||||
self.cst[name] = value
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
|
||||
########################
|
||||
# keyword arguments
|
||||
########################
|
||||
num_warps = kwargs['num_warps'] if 'num_warps' in kwargs else [2, 4, 8]
|
||||
defines = kwargs['defines'] if 'defines' in kwargs else dict()
|
||||
bench = kwargs['bench'] if 'bench' in kwargs else 0
|
||||
if 'grid' not in kwargs:
|
||||
raise RuntimeError('Must provide grid for kernel launch')
|
||||
grid = kwargs['grid']
|
||||
|
||||
|
||||
#########################
|
||||
# cache
|
||||
########################
|
||||
|
||||
# create a new framework op when defines are different
|
||||
key = '-'.join(['{key}-{val}'.format(key=key, val=val) for key, val in defines.items()])
|
||||
if key not in self.fw_id.keys():
|
||||
# code generation options
|
||||
macros = []
|
||||
for k, v in defines.items():
|
||||
cvt = lambda x: _cvt_to_def_str(x)
|
||||
if(isinstance(v, list)):
|
||||
values = list(map(cvt, v))
|
||||
else:
|
||||
values = [cvt(v)]
|
||||
macros.append((k, values))
|
||||
opt = libtriton.options_space()
|
||||
opt.defines = macros
|
||||
opt.num_warps = [2, 4, 8]
|
||||
# create unique id for this op
|
||||
op_id = libtriton.make_op_id()
|
||||
self.fw_id[key] = op_id
|
||||
# register function
|
||||
libtriton.register_fn(op_id, self.src, opt)
|
||||
for name, value in self.cst.items():
|
||||
libtriton.register_cst(op_id, name, value)
|
||||
if self.fw_op is None:
|
||||
self.fw_op = _make_framework_op(self.src, self.outputs, self.tmp, opt)
|
||||
|
||||
########################
|
||||
# initialize
|
||||
########################
|
||||
op_id = self.fw_id[key]
|
||||
libtriton.register_grid(op_id, grid)
|
||||
bench_id = libtriton.make_scalar_id() if bench > 0 else -1
|
||||
|
||||
#########################
|
||||
# call framework function
|
||||
#########################
|
||||
if fw.has_tensorflow():
|
||||
empty = [x for x in args if isinstance(x, triton.utils.tf_empty_proxy)]
|
||||
if len(empty) != len(self.outputs):
|
||||
raise ValueError('Number of empty arguments does not much number of outputs provided')
|
||||
# operands
|
||||
operands = [x.shape if isinstance(x, triton.utils.tf_empty_proxy) else x for x in args]
|
||||
# output data types
|
||||
kwargs = {'id': op_id, 'bench': bench, 'bench_id': bench_id}
|
||||
for i, x in enumerate(args):
|
||||
if isinstance(x, triton.utils.tf_empty_proxy):
|
||||
kwargs['T' + str(i)] = x.dtype
|
||||
# launch
|
||||
ret = self.fw_op(*operands, **kwargs)
|
||||
ret = [ret] if isinstance(ret, fw.tensorflow.Tensor) else ret
|
||||
op_def = ret[0].op.op_def
|
||||
# fill empty tensors with corresponding values
|
||||
for j, y in enumerate(op_def.output_arg):
|
||||
found = False
|
||||
for i, x in enumerate(op_def.input_arg):
|
||||
if y.name + '_shape' == x.name:
|
||||
args[i].tensor = ret[j]
|
||||
found = True
|
||||
assert found
|
||||
# store timing information
|
||||
if bench > 0:
|
||||
for y in ret:
|
||||
bench_registry[y] = triton.utils.id_dict.lazy_entry(bench_id)
|
||||
|
||||
############################
|
||||
# call torch function
|
||||
############################
|
||||
elif fw.has_torch():
|
||||
args = [x if isinstance(x, fw.torch.Tensor) else x for x in args]
|
||||
ret = self.fw_op(op_id, bench, bench_id, *args)
|
||||
if bench > 0:
|
||||
bench_registry[ret] = libtriton.retrieve_scalar(bench_id)
|
||||
|
||||
else:
|
||||
assert False
|
2
python/triton/ops/__init__.py
Normal file
2
python/triton/ops/__init__.py
Normal file
@@ -0,0 +1,2 @@
|
||||
from .einsum import _einsum, einsum
|
||||
from .batchnorm import _batchnorm, batchnorm
|
129
python/triton/ops/batchnorm.py
Normal file
129
python/triton/ops/batchnorm.py
Normal file
@@ -0,0 +1,129 @@
|
||||
import triton
|
||||
import math
|
||||
|
||||
class _batchnorm(triton.function):
|
||||
|
||||
fwd_src = """
|
||||
void fwdbatchnorm(float *Y, float *M, float *V,
|
||||
float *X, float *G, float *B,
|
||||
int N, float eps) {
|
||||
// pointers
|
||||
int c = get_program_id(1);
|
||||
int rm[TM] = 0 ... TM;
|
||||
float *px[TM] = X + rm + c*N;
|
||||
float* py[TM] = Y + rm + c*N;
|
||||
|
||||
// compute mean
|
||||
float accm[TM] = 0;
|
||||
for(int i = 0; i < N; i = i + TM)
|
||||
accm = accm + *(px + i);
|
||||
float mean = (float)accm[+] / N;
|
||||
*(M + c) = mean;
|
||||
|
||||
// compute variance
|
||||
float accv[TM] = 0;
|
||||
for(int i = 0; i < N; i = i + TM){
|
||||
float x[TM] = *(px + i);
|
||||
x = x - mean;
|
||||
accv = accv + x*x;
|
||||
}
|
||||
float var = (float)accv[+] / N;
|
||||
*(V + c) = var;
|
||||
|
||||
// Normalize batch
|
||||
float gamma = *(G + c);
|
||||
float beta = *(B + c);
|
||||
float rstdg = 1 / sqrtf(var + eps) * gamma;
|
||||
for(int i = 0; i < N; i = i + TM){
|
||||
float x[TM] = *(px + i);
|
||||
float y[TM] = (x - mean)*rstdg + beta;
|
||||
*(py + i) = y;
|
||||
}
|
||||
}
|
||||
"""
|
||||
fwd_kernel = triton.kernel(fwd_src, ['Y', 'M', 'V'])
|
||||
|
||||
bwd_src = """
|
||||
void bwdbatchnorm(float *DX, float *DG, float *DB,
|
||||
float *DY, float *X, float *G,
|
||||
float *M, float *V,
|
||||
int N, float epsilon) {
|
||||
|
||||
// pointers
|
||||
int c = get_program_id(1);
|
||||
int rx[TM] = 0 ... TM;
|
||||
int offset = c*N;
|
||||
float* px[TM] = X + rx + offset;
|
||||
float* pdy[TM] = DY + rx + offset;
|
||||
float* pdx[TM] = DX + rx + offset;
|
||||
|
||||
// fetch statistics
|
||||
float gamma = *(G + c);
|
||||
float mean = *(M + c);
|
||||
float var = *(V + c);
|
||||
float rstd = 1 / sqrtf(var + epsilon);
|
||||
|
||||
// compute dgamma and dbeta
|
||||
float acc_dg[TM] = 0;
|
||||
float acc_db[TM] = 0;
|
||||
for(int i = 0; i < N; i = i + TM){
|
||||
float x[TM] = *(px + i);
|
||||
float dy[TM] = *(pdy + i);
|
||||
acc_dg += dy*(x - mean)*rstd;
|
||||
acc_db += dy;
|
||||
}
|
||||
float dg = acc_dg[+];
|
||||
float db = acc_db[+];
|
||||
*(DG + c) = dg;
|
||||
*(DB + c) = db;
|
||||
|
||||
// compute dx
|
||||
for(int i = 0; i < N; i = i + TM){
|
||||
float x[TM] = *(px + i);
|
||||
float dy[TM] = *(pdy + i);
|
||||
float xhat[TM] = (x - mean) * rstd;
|
||||
float xtmp[TM] = (xhat * dg + db) / N;
|
||||
float dx[TM] = (dy - xtmp) * rstd * gamma;
|
||||
*(pdx + i) = dx;
|
||||
}
|
||||
}
|
||||
"""
|
||||
bwd_kernel = triton.kernel(bwd_src, ['DX', 'DG', 'DB'])
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, x, gamma, beta, eps):
|
||||
shape = triton.shape(x)
|
||||
dtype = x.dtype
|
||||
# allocate outputs
|
||||
C, H, W, B = shape[0], shape[1], shape[2], shape[3]
|
||||
y = triton.empty(shape, dtype=dtype)
|
||||
mean = triton.empty([C], dtype=dtype)
|
||||
var = triton.empty([C], dtype=dtype)
|
||||
# execute kernels
|
||||
_batchnorm.fwd_kernel(y, mean, var, x, gamma, beta, H*W*B, eps,
|
||||
grid = lambda opt: [1, C],
|
||||
defines = {'TM': 128})
|
||||
# save
|
||||
ctx.save_for_backward(x, gamma, beta, mean, var)
|
||||
ctx.eps = eps
|
||||
return y
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, dy):
|
||||
# retrieve info
|
||||
x, gamma, beta, mean, var = ctx.saved_tensors
|
||||
eps = ctx.eps
|
||||
# allocate result
|
||||
dx = triton.empty(triton.shape(x), dtype=x.dtype)
|
||||
dgamma = triton.empty(triton.shape(gamma), dtype=gamma.dtype)
|
||||
dbeta = triton.empty(triton.shape(beta), dtype=beta.dtype)
|
||||
# execute
|
||||
C, H, W, B = triton.shape(x)
|
||||
_batchnorm.bwd_kernel(dx, dgamma, dbeta, dy,
|
||||
x, gamma, mean, var,
|
||||
H*W*B, eps,
|
||||
grid = lambda opt: [1, C],
|
||||
defines = {'TM': 128})
|
||||
return dx, dgamma, dbeta, None
|
||||
|
||||
batchnorm = _batchnorm.apply
|
650
python/triton/ops/einsum.py
Normal file
650
python/triton/ops/einsum.py
Normal file
@@ -0,0 +1,650 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
from math import ceil, log2
|
||||
from enum import IntEnum
|
||||
import triton
|
||||
from functools import reduce
|
||||
from operator import mul
|
||||
from sympy.parsing.sympy_parser import parse_expr
|
||||
import sympy as sp
|
||||
from collections import OrderedDict
|
||||
from collections import namedtuple
|
||||
import re
|
||||
from sympy.printing.ccode import C89CodePrinter
|
||||
|
||||
|
||||
class _einsum(triton.function):
|
||||
|
||||
|
||||
#############################
|
||||
## Triton-C code generation
|
||||
#############################
|
||||
def print_cc(expr, axes_0, axes_1, axes_2):
|
||||
|
||||
class TritonCodePrinter(C89CodePrinter):
|
||||
|
||||
def __init__(self, axes_0, axes_1, axes_2):
|
||||
super(TritonCodePrinter, self).__init__()
|
||||
self.axes_0 = axes_0
|
||||
self.axes_1 = axes_1
|
||||
self.axes_2 = axes_2
|
||||
|
||||
def _print_Symbol(self, expr):
|
||||
name = super(C89CodePrinter, self)._print_Symbol(expr)
|
||||
if expr in self.axes_0:
|
||||
return f'r{name}[:, newaxis, newaxis]'
|
||||
if expr in self.axes_1:
|
||||
return f'r{name}[newaxis, :, newaxis]'
|
||||
if expr in self.axes_2:
|
||||
return f'r{name}[newaxis, newaxis, :]'
|
||||
return name
|
||||
|
||||
def _print_Indexed(self, expr):
|
||||
assert len(expr.indices) == 1
|
||||
return "*(%s + %s)" % (self._print(expr.base.label),
|
||||
self._print(expr.indices[0]))
|
||||
|
||||
return TritonCodePrinter(axes_0, axes_1, axes_2).doprint(expr)
|
||||
|
||||
|
||||
def unpack_cc(tile, axes, prefix, remat):
|
||||
ret = ''
|
||||
axes = list(map(str, axes))
|
||||
for i, d in enumerate(reversed(axes)):
|
||||
if i == len(axes) - 1:
|
||||
break
|
||||
currs = ''.join(axes[: len(axes) - i])
|
||||
nexts = ''.join(axes[: len(axes) - (i + 1)])
|
||||
ty = '' if remat else 'int '
|
||||
sz = '' if remat else f'[{tile}]'
|
||||
ret += f' {ty}{prefix}{nexts}{sz} = r{currs} / dim_{d};\n'
|
||||
ret += f' {ty}{prefix}{d}{sz} = r{currs} % dim_{d};\n'
|
||||
return ret
|
||||
|
||||
def strides_cc(name, expr):
|
||||
ret = [f'stride_{name}_{d}' for d in expr[:-1]] + ['1']
|
||||
ret = dict(zip(expr, ret))
|
||||
return ret
|
||||
|
||||
def make_kernel(name,
|
||||
expr_a, expr_b, expr_c,
|
||||
axes_m, axes_n, axes_k, axes_b,
|
||||
multipleof_a, multipleof_b, multipleof_c,
|
||||
lut_mode_a, lut_mode_b,
|
||||
delta_a, delta_b,
|
||||
subscripted):
|
||||
|
||||
use_lut_a = True
|
||||
use_lut_b = True
|
||||
|
||||
src = ""
|
||||
|
||||
if use_lut_a and lut_mode_a == _einsum.LUT_MODE.CONSTANT:
|
||||
src += f"""
|
||||
char __constant__* AD = calloc({4*len(delta_a)});"""
|
||||
if use_lut_b and lut_mode_b == _einsum.LUT_MODE.CONSTANT:
|
||||
src += f"""
|
||||
char __constant__* BD = calloc({4*len(delta_b)});"""
|
||||
|
||||
|
||||
src += f"""
|
||||
__global__ void {name}(
|
||||
TYPE * A __noalias __readonly __aligned(16)
|
||||
, TYPE * B __noalias __readonly __aligned(16)
|
||||
, TYPE * C
|
||||
, int * locks
|
||||
, float alpha
|
||||
, int matmul_m, int matmul_n, int matmul_k __multipleof(16)
|
||||
, int div_m
|
||||
"""
|
||||
for dim in [axes_m, axes_n, axes_k, axes_b]:
|
||||
for d in dim:
|
||||
src += f", int dim_{d}"
|
||||
src += "\n "
|
||||
for dim, name, mult in zip([expr_a, expr_b, expr_c],
|
||||
['a', 'b', 'c'],
|
||||
[multipleof_a, multipleof_b, multipleof_c]):
|
||||
for d in range(len(dim) - 1):
|
||||
attr = f'__multipleof({mult})'
|
||||
src += f", int stride_{name}_{d} {attr}"
|
||||
src += "\n "
|
||||
if lut_mode_a == _einsum.LUT_MODE.SCALAR:
|
||||
src += f", int stride_a_inner __multipleof({multipleof_a})"
|
||||
elif lut_mode_a == _einsum.LUT_MODE.DRAM:
|
||||
src += ", int* AD __noalias __readonly __aligned(16)"
|
||||
src += "\n "
|
||||
if lut_mode_b == _einsum.LUT_MODE.SCALAR:
|
||||
src += f", int stride_b_inner __multipleof({multipleof_b})"
|
||||
elif lut_mode_b == _einsum.LUT_MODE.DRAM:
|
||||
src += ", int* BD"
|
||||
for ptr in subscripted:
|
||||
src += f", int* {ptr}"
|
||||
src += """) {
|
||||
|
||||
// re-order outer program ids
|
||||
int grid_m = (matmul_m + TM - 1) / TM;
|
||||
int grid_n = (matmul_n + TN - 1) / TN;
|
||||
int pid_mn = get_program_id(0) / div_m;
|
||||
int pid_n = pid_mn % grid_n;
|
||||
int pid_m = (pid_mn / grid_n)*div_m + (get_program_id(0) % div_m);
|
||||
|
||||
// get batch program id
|
||||
int pid_b = get_program_id(1);
|
||||
|
||||
#if TZ == 1
|
||||
int off_k = 0;
|
||||
#else
|
||||
// get reduction sub-group program id
|
||||
int pid_z = get_program_id(2);
|
||||
int grid_z = get_num_programs(2);
|
||||
int div_z = matmul_k / TZ;
|
||||
int rem_z = matmul_k % TZ;
|
||||
int off_k = pid_z * div_z;
|
||||
matmul_k = select(pid_z < rem_z, div_z, div_z + rem_z);
|
||||
#endif
|
||||
|
||||
// create ranges
|
||||
"""
|
||||
rk = 'r{}'.format(''.join(map(str,axes_k)))
|
||||
for axes, tile, off in zip([axes_m, axes_n, axes_b, axes_k],
|
||||
['TM', 'TN', 'TB', 'TK'],
|
||||
['pid_m*TM', 'pid_n*TN', 'pid_b*TB', 'off_k']):
|
||||
currs = ''.join(map(str,axes))
|
||||
if axes:
|
||||
src += f" int r{currs}[{tile}] = {off} + 0 ... {tile};\n"
|
||||
src += _einsum.unpack_cc(tile, axes, 'r', False)
|
||||
|
||||
src += """
|
||||
// initialize pointers to A
|
||||
int offa[TM, TK, TB] = """
|
||||
for i, sym in enumerate(expr_a):
|
||||
ccode = _einsum.print_cc(sym, axes_m, axes_k, axes_b)
|
||||
stride = f'stride_a_{i}' if i < len(expr_a) - 1 else '1'
|
||||
if i > 0:
|
||||
src += ' + '
|
||||
src += f"({ccode}) * {stride}\n "
|
||||
src += ';'
|
||||
|
||||
src += """
|
||||
TYPE *pa[TM, TK, TB] = A + offa;"""
|
||||
|
||||
if use_lut_a and not lut_mode_a == _einsum.LUT_MODE.SCALAR:
|
||||
spec = '__constant__' if lut_mode_a == _einsum.LUT_MODE.CONSTANT else ''
|
||||
cast = '(int __constant__*)' if lut_mode_a == _einsum.LUT_MODE.CONSTANT else ''
|
||||
src += f"""
|
||||
// initialize pointers to A look-up table
|
||||
int offadelta[TK] = off_k + 0 ... TK;
|
||||
int {spec} *padelta[TK] = {cast}AD + offadelta;
|
||||
int incda[TM, TK, TB] = (*padelta)[newaxis, :, newaxis];"""
|
||||
|
||||
src += """
|
||||
|
||||
// initialize pointers to B
|
||||
int offb[TK, TN, TB] = """
|
||||
for i, sym in enumerate(expr_b):
|
||||
ccode = _einsum.print_cc(sym, axes_k, axes_n, axes_b)
|
||||
stride = f'stride_b_{i}' if i < len(expr_b) - 1 else '1'
|
||||
if i > 0:
|
||||
src += ' + '
|
||||
src += f"({ccode}) * {stride}\n "
|
||||
src += ';'
|
||||
|
||||
src += """
|
||||
TYPE *pb[TK, TN, TB] = B + offb;"""
|
||||
|
||||
|
||||
if use_lut_b and not lut_mode_b == _einsum.LUT_MODE.SCALAR:
|
||||
spec = '__constant__' if lut_mode_b == _einsum.LUT_MODE.CONSTANT else ''
|
||||
cast = '(int __constant__*)' if lut_mode_b == _einsum.LUT_MODE.CONSTANT else ''
|
||||
src += f"""
|
||||
// initialize pointers to B look-up table
|
||||
int offbdelta[TK] = off_k + 0 ... TK;
|
||||
int *pbdelta[TK] = BD + offbdelta;"""
|
||||
|
||||
src += f"""
|
||||
|
||||
// prefetch
|
||||
bool checkm[TM] = r""" + ''.join(map(str,axes_m)) + f""" < matmul_m;
|
||||
bool checkn[TN] = r""" + ''.join(map(str,axes_n)) + f""" < matmul_n;
|
||||
bool checkk[TK] = {rk} < matmul_k + off_k;
|
||||
bool checka[TM, TK, TB] = checkm[:, newaxis, newaxis] && checkk[newaxis, :, newaxis];
|
||||
bool checkb[TK, TN, TB] = checkk[:, newaxis, newaxis] && checkn[newaxis, :, newaxis];
|
||||
TYPE a[TM, TK, TB] = checka ? *pa : 0;
|
||||
TYPE b[TK, TN, TB] = checkb ? *pb : 0;
|
||||
// accumulate
|
||||
float acc[TM, TN, TB] = 0;
|
||||
for(int k = matmul_k; k > 0; k -= TK) {{
|
||||
acc += a @ b;"""
|
||||
|
||||
if not use_lut_a or not use_lut_b:
|
||||
src += f"""
|
||||
{rk} += TK;
|
||||
"""
|
||||
src += _einsum.unpack_cc(tile, axes_k, 'r', True)
|
||||
|
||||
|
||||
if use_lut_a:
|
||||
if lut_mode_a == _einsum.LUT_MODE.SCALAR:
|
||||
src += """
|
||||
pa += stride_a_inner;"""
|
||||
else:
|
||||
src += """
|
||||
pa += incda;
|
||||
padelta += TK;
|
||||
incda = (*padelta)[newaxis, :, newaxis];"""
|
||||
else:
|
||||
src += """
|
||||
offa = """
|
||||
for i, sym in enumerate(expr_a):
|
||||
ccode = _einsum.print_cc(sym, axes_m, axes_k, axes_b)
|
||||
stride = f'stride_a_{i}' if i < len(expr_a) - 1 else '1'
|
||||
if i > 0:
|
||||
src += ' + '
|
||||
src += f"({ccode}) * {stride}\n "
|
||||
src += """;
|
||||
TYPE *pa[TM, TK, TB] = A + offa;"""
|
||||
|
||||
|
||||
|
||||
if lut_mode_b == _einsum.LUT_MODE.SCALAR:
|
||||
src += """
|
||||
pb += stride_b_inner;"""
|
||||
else:
|
||||
src += """
|
||||
pb += (*pbdelta)[:, newaxis, newaxis];
|
||||
pbdelta += TK;"""
|
||||
|
||||
src += f"""
|
||||
checkk = k > TK;
|
||||
checka = checkm[:, newaxis, newaxis] && checkk[newaxis, :, newaxis];
|
||||
checkb = checkk[:, newaxis, newaxis] && checkn[newaxis, :, newaxis];
|
||||
a = *?(checka)pa;
|
||||
b = *?(checkb)pb;
|
||||
}}
|
||||
TYPE c[TM, TN, TB] = acc;
|
||||
|
||||
// re-materialize ranges
|
||||
"""
|
||||
for axes, tile, off in zip([axes_m, axes_n, axes_b],
|
||||
['TM', 'TN', 'TB'],
|
||||
['pid_m*TM', 'pid_n*TN', 'pid_b*TB']):
|
||||
currs = ''.join(map(str,axes))
|
||||
if axes:
|
||||
src += f" r{currs} = {off} + 0 ... {tile};\n"
|
||||
src += _einsum.unpack_cc(tile, axes, 'r', True)
|
||||
|
||||
src += """
|
||||
// initialize pointers to C
|
||||
int offc[TM, TN, TB] = """
|
||||
for i, sym in enumerate(expr_c):
|
||||
stride = f'stride_c_{i}' if i < len(expr_c) - 1 else '1'
|
||||
ccode = _einsum.print_cc(sym, axes_m, axes_n, axes_b)
|
||||
if i > 0:
|
||||
src += ' + '
|
||||
src += f"({ccode}) * {stride}\n "
|
||||
src += ';'
|
||||
|
||||
src += """
|
||||
TYPE *pc[TM, TN, TB] = C + offc;
|
||||
|
||||
// bounds-checking
|
||||
checkm = r""" + ''.join(map(str,axes_m)) + """ < matmul_m;
|
||||
checkn = r""" + ''.join(map(str,axes_n)) + """ < matmul_n;
|
||||
bool checkc[TM, TN, TB] = checkm[:, newaxis, newaxis] &&
|
||||
checkn[newaxis, :, newaxis];
|
||||
|
||||
// write back
|
||||
#if TZ == 1
|
||||
*?(checkc)pc = c;
|
||||
#else
|
||||
int *plock = locks + pid_mn + pid_b * get_num_programs(0);
|
||||
int *pcount = plock + 1024*1024;
|
||||
// spin
|
||||
for(int repeat = 1; repeat == 1; repeat = atomic_cas(plock, 0, 1));
|
||||
int count = *pcount;
|
||||
if(count == 0)
|
||||
*?(checkc)pc = c;
|
||||
else
|
||||
*?(checkc)pc = c + *?(checkc)pc;
|
||||
atomic_xchg(pcount, (count + 1) % (grid_z));
|
||||
atomic_xchg(plock, 0);
|
||||
#endif
|
||||
}
|
||||
"""
|
||||
|
||||
#print(src)
|
||||
ret = triton.kernel(src, ['C'])
|
||||
if use_lut_a and lut_mode_a == _einsum.LUT_MODE.CONSTANT:
|
||||
ret.set_constant('AD', delta_a)
|
||||
if use_lut_b and lut_mode_b == _einsum.LUT_MODE.CONSTANT:
|
||||
ret.set_constant('BD', delta_b)
|
||||
return ret
|
||||
|
||||
############################
|
||||
## Look-up Table
|
||||
############################
|
||||
|
||||
class LUT_MODE(IntEnum):
|
||||
SCALAR = 1
|
||||
CONSTANT = 2
|
||||
DRAM = 3
|
||||
|
||||
def lut_mode(delta):
|
||||
if delta.size == 0 or np.min(delta) == np.max(delta):
|
||||
return _einsum.LUT_MODE.SCALAR
|
||||
#if delta.size < 4096:
|
||||
# return _einsum.LUT_MODE.CONSTANT
|
||||
return _einsum.LUT_MODE.DRAM
|
||||
|
||||
def symbolic_delta(symbols, axes):
|
||||
rank = len(symbols)
|
||||
strides = [sp.symbols(f'stride{d}') for d in range(rank)]
|
||||
nexts = {s: sp.symbols(f'next{s}') for s in axes}
|
||||
delta = 0
|
||||
for i in range(rank):
|
||||
delta += strides[i] * (symbols[i].subs(nexts) - symbols[i])
|
||||
return delta
|
||||
|
||||
def unpack_offset(k, axes, dims):
|
||||
ret = dict()
|
||||
for d in reversed(axes):
|
||||
ret[d] = k % dims[d]
|
||||
k = k // dims[d]
|
||||
return ret
|
||||
|
||||
def make_delta(axes, step, stride, dims, symbols, arrays):
|
||||
# symbolic pointer increments
|
||||
delta = _einsum.symbolic_delta(symbols, axes)
|
||||
args = [f'stride{d}' for d in range(len(stride))]
|
||||
args += [f'{sk}' for sk in axes]
|
||||
args += [f'next{sk}' for sk in axes]
|
||||
args += [f'{sk}' for sk, _ in arrays]
|
||||
fn = sp.lambdify(args, delta, 'numpy')
|
||||
# inner axes values
|
||||
inner = [dims[d] for d in axes]
|
||||
k = np.arange(np.prod(inner), dtype=np.int32)
|
||||
off = _einsum.unpack_offset(k, axes, dims)
|
||||
nextoff = _einsum.unpack_offset(k + step, axes, dims)
|
||||
# evaluate deltas
|
||||
args = [s for s in stride]
|
||||
args += [off[sk] for sk in axes]
|
||||
args += [nextoff[sk] for sk in axes]
|
||||
args += [x for _, x in arrays]
|
||||
delta = fn(*args)
|
||||
return delta, _einsum.lut_mode(delta[:-step])
|
||||
|
||||
############################
|
||||
## Einsum parsing
|
||||
############################
|
||||
|
||||
def uniq(seq):
|
||||
seen = set()
|
||||
seen_add = seen.add
|
||||
return [x for x in seq if not (x in seen or seen_add(x))]
|
||||
|
||||
def parse_axes(expr_a, expr_b, expr_c, subscripted):
|
||||
is_index = lambda x: type(x) == sp.indexed.Indexed or str(x) in subscripted
|
||||
sym_a = [x for s in expr_a for x in s.free_symbols if not is_index(x)]
|
||||
sym_b = [x for s in expr_b for x in s.free_symbols if not is_index(x)]
|
||||
sym_c = [x for s in expr_c for x in s.free_symbols]
|
||||
batch = [d for d in sym_a if d in sym_b and d in sym_c]
|
||||
outer = [d for d in sym_a if d not in sym_b and d in sym_c]
|
||||
inner = [d for d in sym_a if d in sym_b and d not in sym_c]
|
||||
illegal = [d for d in sym_a if d not in sym_b and d not in sym_c]
|
||||
if illegal:
|
||||
raise ValueError(f"einsum labels {illegal} ({expr_a}) "\
|
||||
f"not present in {expr_b} or {expr_c}")
|
||||
return _einsum.uniq(batch), _einsum.uniq(outer), _einsum.uniq(inner)
|
||||
|
||||
|
||||
def replace_subscript(expr, arrays):
|
||||
# replace array indexing by Indexed()
|
||||
indexed = re.findall('([_a-zA-Z][_a-zA-Z0-9]*)\[([_a-z]*)\]', expr)
|
||||
for x in indexed:
|
||||
arrays.append(x[0])
|
||||
expr = expr.replace(f'{x[0]}[{x[1]}]', f'Indexed({x[0]},{x[1]})')
|
||||
return expr
|
||||
|
||||
|
||||
def parse_expr(expr, arrays):
|
||||
# extract symbols
|
||||
sym = []
|
||||
i = 0
|
||||
while i < len(expr):
|
||||
d = expr[i]
|
||||
if d == '(':
|
||||
size = expr[i:].find(')')
|
||||
d = expr[i : i + size + 1]
|
||||
d = _einsum.replace_subscript(d, arrays)
|
||||
sym.append(parse_expr(d))
|
||||
i += size + 1
|
||||
else:
|
||||
sym.append(parse_expr(d))
|
||||
i += 1
|
||||
return sym
|
||||
|
||||
############################
|
||||
## Preprocessing
|
||||
############################
|
||||
|
||||
@staticmethod
|
||||
def pad(tensor, pad):
|
||||
pad = pad + [0] * (2*len(tensor.shape) - len(pad))
|
||||
begin = [ x if x > 0 else None for x in pad[-1::-2]]
|
||||
end = [-x if x > 0 else None for x in pad[-2::-2]]
|
||||
slices = [slice(b, e) for b, e in zip(begin, end)]
|
||||
tensor = torch.nn.functional.pad(tensor, pad, 'constant', 0)
|
||||
tensor = tensor[slices]
|
||||
return tensor
|
||||
|
||||
|
||||
############################
|
||||
## Compilation
|
||||
############################
|
||||
|
||||
class instance:
|
||||
|
||||
locks = None
|
||||
kernel_cache = dict()
|
||||
|
||||
def __init__(self, einsum, dtype, stride_a, stride_b, stride_c, shape_a, shape_b, shape_c, arrays):
|
||||
# parse symbols
|
||||
expr_a, expr_bc = einsum.split(",")
|
||||
expr_b, expr_c = expr_bc.split("->")
|
||||
subscripted = []
|
||||
sym_a = _einsum.parse_expr(expr_a, subscripted)
|
||||
sym_b = _einsum.parse_expr(expr_b, subscripted)
|
||||
sym_c = _einsum.parse_expr(expr_c, subscripted)
|
||||
# parse axes
|
||||
axes_b, axes_m, axes_k = _einsum.parse_axes(sym_a, sym_b, sym_c, subscripted)
|
||||
_, axes_n, _ = _einsum.parse_axes(sym_b, sym_a, sym_c, subscripted)
|
||||
axes = axes_b + axes_m + axes_n + axes_k
|
||||
# check dimensions
|
||||
dims_a = dict(zip(sym_a, shape_a))
|
||||
dims_b = dict(zip(sym_b, shape_b))
|
||||
dims_c = dict(zip(sym_c, shape_c))
|
||||
for axes in [axes_b, axes_k]:
|
||||
for d in axes:
|
||||
dim_a = dims_a[d] if d in sym_a else None
|
||||
dim_b = dims_b[d] if d in sym_b else None
|
||||
if dim_a and dim_b and dim_a != dim_b:
|
||||
raise ValueError(f'incompatible dimension {d}'
|
||||
f' (a: {dim_a}; b: {dim_b})')
|
||||
dims = dict()
|
||||
dims.update(dims_a)
|
||||
dims.update(dims_b)
|
||||
dims.update(dims_c)
|
||||
# look-up tables
|
||||
TK = 16 if dtype == triton.fw.torch.float16 else 8
|
||||
arrays = [(x, arrays[x]) for x in subscripted]
|
||||
delta_a, lut_mode_a = _einsum.make_delta(axes_k, TK, stride_a, dims, sym_a, arrays)
|
||||
delta_b, lut_mode_b = _einsum.make_delta(axes_k, TK, stride_b, dims, sym_b, arrays)
|
||||
# hash for recompilation
|
||||
stride_a_multiple = max([x for x in [1, 2, 4, 8] if shape_a[-1] % x == 0])
|
||||
stride_b_multiple = max([x for x in [1, 2, 4, 8] if shape_b[-1] % x == 0])
|
||||
stride_c_multiple = max([x for x in [1, 2, 4, 8] if shape_c[-1] % x == 0])
|
||||
name = f'{expr_a}_{expr_b}_{expr_c}_{lut_mode_a}_{lut_mode_b}'\
|
||||
f'_{stride_a_multiple}_{stride_b_multiple}_{stride_c_multiple}'
|
||||
# recompile if necessary
|
||||
cache = _einsum.instance.kernel_cache
|
||||
if name not in cache:
|
||||
cachesize = len(cache)
|
||||
cache[name] = _einsum.make_kernel(f'__einsum{cachesize}',
|
||||
sym_a, sym_b, sym_c,
|
||||
axes_m, axes_n, axes_k, axes_b,
|
||||
stride_a_multiple, stride_b_multiple, stride_c_multiple,
|
||||
lut_mode_a, lut_mode_b,
|
||||
delta_a, delta_b,
|
||||
subscripted)
|
||||
self.kernel = cache[name]
|
||||
# Initialize locks
|
||||
if _einsum.instance.locks is None:
|
||||
_einsum.instance.locks = torch.zeros(2*1024*1024, dtype=torch.int32).cuda()
|
||||
# Kernel arguments
|
||||
dim_m = [dims[d] for d in axes_m]
|
||||
dim_n = [dims[d] for d in axes_n]
|
||||
dim_k = [dims[d] for d in axes_k]
|
||||
dim_b = [dims[d] for d in axes_b]
|
||||
M = reduce(mul, dim_m, 1)
|
||||
N = reduce(mul, dim_n, 1)
|
||||
K = reduce(mul, dim_k, 1)
|
||||
B = reduce(mul, dim_b, 1)
|
||||
stride_a = list(stride_a[:-1])
|
||||
stride_b = list(stride_b[:-1])
|
||||
stride_c = list(stride_c[:-1])
|
||||
arrays = [torch.from_numpy(x).cuda() for _, x in arrays]
|
||||
alpha = 1.
|
||||
div_m = 1
|
||||
self.args = [None, None, None,
|
||||
_einsum.instance.locks,
|
||||
alpha, M, N, K, div_m] +\
|
||||
dim_m + dim_n + dim_k + dim_b +\
|
||||
stride_a + stride_b + stride_c
|
||||
if lut_mode_a != _einsum.LUT_MODE.CONSTANT:
|
||||
delta_a = delta_a[0] if lut_mode_a == _einsum.LUT_MODE.SCALAR else torch.from_numpy(delta_a).cuda()
|
||||
self.args += [delta_a]
|
||||
if lut_mode_b != _einsum.LUT_MODE.CONSTANT:
|
||||
delta_b = delta_b[0] if lut_mode_b == _einsum.LUT_MODE.SCALAR else torch.from_numpy(delta_b).cuda()
|
||||
self.args += [delta_b]
|
||||
self.args += arrays
|
||||
self.grid = lambda opt: [triton.cdiv(M, opt.d('TM')) *
|
||||
triton.cdiv(N, opt.d('TN')),
|
||||
triton.cdiv(B, opt.d('TB')),
|
||||
opt.d('TZ')]
|
||||
# position of dynamic arguments
|
||||
self.pos_a = 0
|
||||
self.pos_b = 1
|
||||
self.pos_c = 2
|
||||
# pre-processor macros
|
||||
TM = [16] + [x for x in [32, 64, 128] if x <= M]
|
||||
TN = [16] + [x for x in [32, 64, 128] if x <= N]
|
||||
TB = [x for x in [1, 2, 4] if x <= B]
|
||||
MAX_GZ = K // 2048
|
||||
MIN_GM = M // max(TM)
|
||||
MIN_GN = N // max(TN)
|
||||
MIN_GB = B // max(TB)
|
||||
TZ = [x for x in [1, 2, 4, 8, 16, 32] \
|
||||
if x < MAX_GZ and x*MIN_GM*MIN_GN*MIN_GB < 256]
|
||||
TZ = [1] if not TZ else [TZ[-1], TZ[-1]*2]
|
||||
self.macros = { 'TM': TM, 'TN': TN, 'TB': TB, 'TK': TK, 'TZ': TZ, 'TYPE': dtype }
|
||||
# information on compute
|
||||
self.dtype = dtype
|
||||
self.flops = 2 * B * M * N * K
|
||||
self.sym_a = sym_a
|
||||
self.sym_b = sym_b
|
||||
self.sym_c = sym_c
|
||||
# save equivalent mat-mul dimensions
|
||||
self.matmul_B = B
|
||||
self.matmul_M = M
|
||||
self.matmul_N = N
|
||||
self.matmul_K = K
|
||||
|
||||
def run(self, a, b, c, bench):
|
||||
self.args[self.pos_a] = a
|
||||
self.args[self.pos_b] = b
|
||||
self.args[self.pos_c] = c
|
||||
self.kernel(*self.args, grid=self.grid, bench=bench, defines=self.macros)
|
||||
|
||||
|
||||
|
||||
|
||||
############################
|
||||
## Forward
|
||||
############################
|
||||
|
||||
instance_cache = dict()
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, einsum, a, b, shape_c, **kwargs):
|
||||
bench = kwargs['bench'] if 'bench' in kwargs else False
|
||||
arrays = kwargs['arrays'] if 'arrays' in kwargs else dict()
|
||||
# allocate output
|
||||
dtype = a.dtype
|
||||
c = triton.empty(shape_c, dtype=dtype)
|
||||
# compile einsum instance
|
||||
cache = _einsum.instance_cache
|
||||
key = (einsum, dtype,
|
||||
a.stride(), b.stride(), c.stride(),
|
||||
a.shape, b.shape, c.shape)
|
||||
if key not in cache:
|
||||
cache[key] = _einsum.instance(einsum, dtype,
|
||||
a.stride(), b.stride(), c.stride(),
|
||||
a.shape, b.shape, c.shape, arrays)
|
||||
instance = cache[key]
|
||||
instance.run(a, b, c, bench)
|
||||
# save information in context
|
||||
ctx.flops = instance.flops
|
||||
ctx.sym_a = instance.sym_a
|
||||
ctx.sym_b = instance.sym_b
|
||||
ctx.sym_c = instance.sym_c
|
||||
ctx.matmul_B = instance.matmul_B
|
||||
ctx.matmul_M = instance.matmul_M
|
||||
ctx.matmul_N = instance.matmul_N
|
||||
ctx.matmul_K = instance.matmul_K
|
||||
ctx.bench = bench
|
||||
ctx.save_for_backward(a, b)
|
||||
return c
|
||||
|
||||
############################
|
||||
## Backward
|
||||
############################
|
||||
|
||||
@staticmethod
|
||||
def sym_invert(sym_c, sym_x, prefix, renamed, inverse):
|
||||
for i, expr in enumerate(sym_x):
|
||||
if expr.is_symbol:
|
||||
continue
|
||||
sc = [x for x in expr.free_symbols if x in sym_c][0]
|
||||
sx = sp.symbols(f'{prefix}{i}')
|
||||
renamed[expr] = sx
|
||||
inverse[sc] = sp.solve(sp.Eq(expr, sx), sc)[0]
|
||||
|
||||
@staticmethod
|
||||
def sym_to_expr(sym):
|
||||
res = [f'({x})' for x in sym]
|
||||
res = ''.join(res)
|
||||
return res
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, dy):
|
||||
a, b = ctx.saved_tensors
|
||||
sym_a = ctx.sym_a
|
||||
sym_b = ctx.sym_b
|
||||
sym_c = ctx.sym_c
|
||||
inverse = dict()
|
||||
renamed = dict()
|
||||
_einsum.sym_invert(sym_c, sym_a, 'a', renamed, inverse)
|
||||
_einsum.sym_invert(sym_c, sym_b, 'b', renamed, inverse)
|
||||
sym_a = [renamed[x] if x in renamed else x for x in sym_a]
|
||||
sym_b = [renamed[x] if x in renamed else x for x in sym_b]
|
||||
sym_c = [inverse[x] if x in inverse else x for x in sym_c]
|
||||
expr_a = _einsum.sym_to_expr(sym_a)
|
||||
expr_b = _einsum.sym_to_expr(sym_b)
|
||||
expr_c = _einsum.sym_to_expr(sym_c)
|
||||
expr = f'{expr_c},{expr_b}->{expr_a}'
|
||||
da = einsum(expr, dy, b, a.shape, False)
|
||||
return None, da, None, None, None
|
||||
|
||||
|
||||
|
||||
einsum = _einsum.apply
|
75
python/triton/utils.py
Normal file
75
python/triton/utils.py
Normal file
@@ -0,0 +1,75 @@
|
||||
import triton.frameworks as fw
|
||||
import triton._C.libtriton as libtriton
|
||||
import numpy as np
|
||||
import weakref
|
||||
|
||||
def cdiv(a, b):
|
||||
return -(-a // b)
|
||||
|
||||
class tf_empty_proxy:
|
||||
|
||||
def __init__(self, shape, dtype):
|
||||
self.shape = shape
|
||||
self.dtype = dtype
|
||||
self.tensor = None
|
||||
|
||||
def to_tensor(self):
|
||||
assert self.tensor is not None
|
||||
return self.tensor
|
||||
|
||||
def empty(shape, dtype):
|
||||
if fw.has_tensorflow():
|
||||
shape = [fw.tensorflow.constant(x) for x in shape]
|
||||
shape = fw.tensorflow.stack(shape)
|
||||
return tf_empty_proxy(shape, dtype)
|
||||
#return fw.tf_extra_ops.alloc_empty(args, T = dtype)
|
||||
elif fw.has_torch():
|
||||
return fw.torch.empty(shape, dtype=dtype, device='cuda:0')
|
||||
|
||||
def shape(A) :
|
||||
if fw.has_tensorflow():
|
||||
return A.shape.as_list()
|
||||
elif fw.has_torch():
|
||||
return A.shape
|
||||
else:
|
||||
assert False
|
||||
|
||||
|
||||
class id_dict:
|
||||
|
||||
# Lazy entry for e.g., tensorflow, when value of benchmark is
|
||||
# not known at graph compile time
|
||||
class lazy_entry:
|
||||
def __init__(self, id):
|
||||
self.id = id
|
||||
|
||||
def get(self):
|
||||
return libtriton.retrieve_scalar(self.id)
|
||||
|
||||
def __init__(self):
|
||||
self.data = dict()
|
||||
|
||||
def __delitem__(self, key):
|
||||
del self.data[key]
|
||||
|
||||
@staticmethod
|
||||
def _get_key(key):
|
||||
if fw.has_tensorflow():
|
||||
if isinstance(key, fw.tensorflow.Tensor):
|
||||
key = id(key.op)
|
||||
if fw.has_torch():
|
||||
if isinstance(key, fw.torch.Tensor):
|
||||
key = id(key)
|
||||
return key
|
||||
|
||||
def __getitem__(self, key):
|
||||
ret = self.data[id_dict._get_key(key)]
|
||||
if isinstance(ret, id_dict.lazy_entry):
|
||||
return ret.get()
|
||||
return ret
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
self.data[id_dict._get_key(key)] = value
|
Reference in New Issue
Block a user