[GH-PAGES] Updated website
This commit is contained in:
265
_sources/getting-started/tutorials/01-vector-add.rst.txt
Normal file
265
_sources/getting-started/tutorials/01-vector-add.rst.txt
Normal file
@@ -0,0 +1,265 @@
|
||||
|
||||
.. DO NOT EDIT.
|
||||
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
|
||||
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
|
||||
.. "getting-started/tutorials/01-vector-add.py"
|
||||
.. LINE NUMBERS ARE GIVEN BELOW.
|
||||
|
||||
.. only:: html
|
||||
|
||||
.. note::
|
||||
:class: sphx-glr-download-link-note
|
||||
|
||||
Click :ref:`here <sphx_glr_download_getting-started_tutorials_01-vector-add.py>`
|
||||
to download the full example code
|
||||
|
||||
.. rst-class:: sphx-glr-example-title
|
||||
|
||||
.. _sphx_glr_getting-started_tutorials_01-vector-add.py:
|
||||
|
||||
|
||||
Vector Addition
|
||||
=================
|
||||
In this tutorial, you will write a simple, high-performance vector addition using Triton and learn about:
|
||||
|
||||
- The basic syntax of the Triton programming language
|
||||
- The best practices for creating PyTorch custom operators using the :code:`triton.kernel` Python API
|
||||
- The best practices for validating and benchmarking custom ops against native reference implementations
|
||||
|
||||
.. GENERATED FROM PYTHON SOURCE LINES 12-51
|
||||
|
||||
Compute Kernel
|
||||
--------------------------
|
||||
|
||||
Each compute kernel is declared using the :code:`__global__` attribute, and executed many times in parallel
|
||||
on different chunks of data (See the `Single Program, Multiple Data <(https://en.wikipedia.org/wiki/SPMD>`_)
|
||||
programming model for more details).
|
||||
|
||||
.. code-block:: C
|
||||
|
||||
__global__ void add(float* z, float* x, float* y, int N){
|
||||
// The `get_program_id(i)` returns the i-th coordinate
|
||||
// of the program in the overaching SPMD context
|
||||
// (a.k.a launch grid). This is what allows us to process
|
||||
// different chunks of data in parallel.
|
||||
// For those similar with CUDA, `get_program_id({0,1,2})`
|
||||
// is similar to blockIdx.{x,y,z}
|
||||
int pid = get_program_id(0);
|
||||
// In Triton, arrays are first-class citizen. In other words,
|
||||
// they are primitives data-types and are -- contrary to C and
|
||||
// CUDA -- not implemented as pointers to contiguous chunks of
|
||||
// memory.
|
||||
// In the few lines below, we create an array of `BLOCK` pointers
|
||||
// whose memory values are, e.g.:
|
||||
// [z + pid*BLOCK + 0, z + pid*BLOCK + 1, ..., z + pid*BLOCK + BLOCK - 1]
|
||||
// Note: here BLOCK is expected to be a pre-processor macro defined at compile-time
|
||||
int offset[BLOCK] = pid * BLOCK + 0 ... BLOCK;
|
||||
float* pz [BLOCK] = z + offset;
|
||||
float* px [BLOCK] = x + offset;
|
||||
float* py [BLOCK] = y + offset;
|
||||
// Simple element-wise control-flow for load/store operations can
|
||||
// be achieved using the the ternary operator `cond ? val_true : val_false`
|
||||
// or the conditional dereferencing operator `*?(cond)ptr
|
||||
// Here, we make sure that we do not access memory out-of-bounds when we
|
||||
// write-back `z`
|
||||
bool check[BLOCK] = offset < N;
|
||||
*?(check)pz = *?(check)px + *?(check)py;
|
||||
}
|
||||
|
||||
The existence of arrays as a primitive data-type for Triton comes with a number of advantages that are highlighted in the `MAPL'2019 Triton paper <http://www.eecs.harvard.edu/~htk/publication/2019-mapl-tillet-kung-cox.pdf>`_.
|
||||
|
||||
.. GENERATED FROM PYTHON SOURCE LINES 53-60
|
||||
|
||||
Torch bindings
|
||||
--------------------------
|
||||
The only thing that matters when it comes to Triton and Torch is the :code:`triton.kernel` class. This allows you to transform the above C-like function into a callable python object that can be used to modify :code:`torch.tensor` objects. To create a :code:`triton.kernel`, you only need three things:
|
||||
|
||||
- :code:`source: string`: the source-code of the kernel you want to create
|
||||
- :code:`device: torch.device`: the device you want to compile this code for
|
||||
- :code:`defines: dict`: the set of macros that you want the pre-processor to `#define` for you
|
||||
|
||||
.. GENERATED FROM PYTHON SOURCE LINES 60-125
|
||||
|
||||
.. code-block:: default
|
||||
|
||||
|
||||
import torch
|
||||
import triton
|
||||
|
||||
# source-code for Triton compute kernel
|
||||
# here we just copy-paste the above code without the extensive comments.
|
||||
# you may prefer to store it in a .c file and load it from there instead.
|
||||
_src = """
|
||||
__global__ void add(float* z, float* x, float* y, int N){
|
||||
// program id
|
||||
int pid = get_program_id(0);
|
||||
// create arrays of pointers
|
||||
int offset[BLOCK] = pid * BLOCK + 0 ... BLOCK;
|
||||
float* pz[BLOCK] = z + offset;
|
||||
float* px[BLOCK] = x + offset;
|
||||
float* py[BLOCK] = y + offset;
|
||||
// bounds checking
|
||||
bool check[BLOCK] = offset < N;
|
||||
// write-back
|
||||
*?(check)pz = *?(check)px + *?(check)py;
|
||||
}
|
||||
"""
|
||||
|
||||
|
||||
# This function returns a callable `triton.kernel` object created from the above source code.
|
||||
# For portability, we maintain a cache of kernels for different `torch.device`
|
||||
# We compile the kernel with -DBLOCK=1024
|
||||
def make_add_kernel(device):
|
||||
cache = make_add_kernel.cache
|
||||
if device not in cache:
|
||||
defines = {'BLOCK': 1024}
|
||||
cache[device] = triton.kernel(_src, device=device, defines=defines)
|
||||
return cache[device]
|
||||
|
||||
|
||||
make_add_kernel.cache = dict()
|
||||
|
||||
|
||||
# This is a standard torch custom autograd Function;
|
||||
# The only difference is that we can now use the above kernel in the `forward` and `backward` functions.`
|
||||
class _add(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, x, y):
|
||||
# constraints of the op
|
||||
assert x.dtype == torch.float32
|
||||
# *allocate output*
|
||||
z = torch.empty_like(x)
|
||||
# *create launch grid*:
|
||||
# this is a function which takes compilation parameters `opt`
|
||||
# as input and returns a tuple of int (i.e., launch grid) for the kernel.
|
||||
# triton.cdiv is a shortcut for ceil division:
|
||||
# triton.cdiv(a, b) = (a + b - 1) // b
|
||||
N = z.shape[0]
|
||||
grid = lambda opt: (triton.cdiv(N, opt.BLOCK), )
|
||||
# *launch kernel*:
|
||||
# pointer to the data of torch tensors can be retrieved with
|
||||
# the `.data_ptr()` method
|
||||
kernel = make_add_kernel(z.device)
|
||||
kernel(z.data_ptr(), x.data_ptr(), y.data_ptr(), N, grid=grid)
|
||||
return z
|
||||
|
||||
|
||||
# Just like we standard PyTorch ops We use the :code:`.apply` method to create a callable object for our function
|
||||
add = _add.apply
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
.. GENERATED FROM PYTHON SOURCE LINES 126-128
|
||||
|
||||
Unit Test
|
||||
--------------------------
|
||||
|
||||
.. GENERATED FROM PYTHON SOURCE LINES 128-137
|
||||
|
||||
.. code-block:: default
|
||||
|
||||
torch.manual_seed(0)
|
||||
x = torch.rand(98432, device='cuda')
|
||||
y = torch.rand(98432, device='cuda')
|
||||
za = x + y
|
||||
zb = add(x, y)
|
||||
print(za)
|
||||
print(zb)
|
||||
print(f'The maximum difference between torch and triton is ' f'{torch.max(torch.abs(za - zb))}')
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
.. rst-class:: sphx-glr-script-out
|
||||
|
||||
Out:
|
||||
|
||||
.. code-block:: none
|
||||
|
||||
tensor([1.3713, 1.3076, 0.4940, ..., 0.6682, 1.1984, 1.2696], device='cuda:0')
|
||||
tensor([1.3713, 1.3076, 0.4940, ..., 0.6682, 1.1984, 1.2696], device='cuda:0')
|
||||
The maximum difference between torch and triton is 0.0
|
||||
|
||||
|
||||
|
||||
|
||||
.. GENERATED FROM PYTHON SOURCE LINES 138-141
|
||||
|
||||
Benchmarking
|
||||
--------------------------
|
||||
We can now benchmark our custom op for vectors of increasing sizes to get a sense of how it does
|
||||
|
||||
.. GENERATED FROM PYTHON SOURCE LINES 141-150
|
||||
|
||||
.. code-block:: default
|
||||
|
||||
|
||||
warmup = 10
|
||||
rep = 200
|
||||
for N in [2**i for i in range(17, 26, 1)]:
|
||||
x = torch.rand(N, device='cuda')
|
||||
y = torch.rand(N, device='cuda')
|
||||
triton_ms = triton.testing.do_bench(lambda: add(x, y), warmup=warmup, rep=rep)
|
||||
torch_ms = triton.testing.do_bench(lambda: x + y, warmup=warmup, rep=rep)
|
||||
# print the performance of triton and torch as well as the achieved bandwidth
|
||||
print(f'{N} {triton_ms:.3f} {torch_ms:.3f}')
|
||||
|
||||
|
||||
|
||||
.. rst-class:: sphx-glr-script-out
|
||||
|
||||
Out:
|
||||
|
||||
.. code-block:: none
|
||||
|
||||
131072 0.022 0.006
|
||||
262144 0.021 0.005
|
||||
524288 0.022 0.017
|
||||
1048576 0.037 0.037
|
||||
2097152 0.074 0.073
|
||||
4194304 0.144 0.143
|
||||
8388608 0.289 0.285
|
||||
16777216 0.566 0.562
|
||||
33554432 1.131 1.121
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
.. rst-class:: sphx-glr-timing
|
||||
|
||||
**Total running time of the script:** ( 0 minutes 3.225 seconds)
|
||||
|
||||
|
||||
.. _sphx_glr_download_getting-started_tutorials_01-vector-add.py:
|
||||
|
||||
|
||||
.. only :: html
|
||||
|
||||
.. container:: sphx-glr-footer
|
||||
:class: sphx-glr-footer-example
|
||||
|
||||
|
||||
|
||||
.. container:: sphx-glr-download sphx-glr-download-python
|
||||
|
||||
:download:`Download Python source code: 01-vector-add.py <01-vector-add.py>`
|
||||
|
||||
|
||||
|
||||
.. container:: sphx-glr-download sphx-glr-download-jupyter
|
||||
|
||||
:download:`Download Jupyter notebook: 01-vector-add.ipynb <01-vector-add.ipynb>`
|
||||
|
||||
|
||||
.. only:: html
|
||||
|
||||
.. rst-class:: sphx-glr-signature
|
||||
|
||||
`Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_
|
328
_sources/getting-started/tutorials/02-fused-softmax.rst.txt
Normal file
328
_sources/getting-started/tutorials/02-fused-softmax.rst.txt
Normal file
@@ -0,0 +1,328 @@
|
||||
|
||||
.. DO NOT EDIT.
|
||||
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
|
||||
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
|
||||
.. "getting-started/tutorials/02-fused-softmax.py"
|
||||
.. LINE NUMBERS ARE GIVEN BELOW.
|
||||
|
||||
.. only:: html
|
||||
|
||||
.. note::
|
||||
:class: sphx-glr-download-link-note
|
||||
|
||||
Click :ref:`here <sphx_glr_download_getting-started_tutorials_02-fused-softmax.py>`
|
||||
to download the full example code
|
||||
|
||||
.. rst-class:: sphx-glr-example-title
|
||||
|
||||
.. _sphx_glr_getting-started_tutorials_02-fused-softmax.py:
|
||||
|
||||
|
||||
Fused Softmax
|
||||
=================
|
||||
In this tutorial, you will write a fused softmax layer that outperform's PyTorch implementation and learn about:
|
||||
|
||||
- The benefits of kernel fusion for bandwidth-bound operations.
|
||||
- The syntax and usage of reduction operators in Triton.
|
||||
- The automatic vectorization capabilities of the Triton compiler.
|
||||
|
||||
.. GENERATED FROM PYTHON SOURCE LINES 12-16
|
||||
|
||||
Motivations
|
||||
------------
|
||||
Custom GPU kernels for elementwise additions are educationally valuable but won't get you very far in practice.
|
||||
Let us consider instead the case of a simple (numerically stabilized) softmax operation:
|
||||
|
||||
.. GENERATED FROM PYTHON SOURCE LINES 16-36
|
||||
|
||||
.. code-block:: default
|
||||
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
# Compute the row-wise softmax of x
|
||||
def naive_softmax(x):
|
||||
# read MN elements ; write M elements
|
||||
x_max = torch.max(x, axis=1)[0]
|
||||
# read 2MN elements ; write MN elements
|
||||
z = x - x_max[:, None]
|
||||
# read MN elements ; write MN elements
|
||||
numerator = torch.exp(x)
|
||||
# read MN elements ; write M elements
|
||||
denominator = torch.sum(numerator, axis=1)
|
||||
# read 2MN elements ; write MN elements
|
||||
ret = numerator / denominator[:, None]
|
||||
# in total: read 7MN elements ; wrote 3MN + 2M elements
|
||||
return ret
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
.. GENERATED FROM PYTHON SOURCE LINES 37-41
|
||||
|
||||
When implemented naively in pytorch, computing :code:`y = naive_softmax(x)` for :math:`x \in R^{M \times N}` requires reading :math:`7MN` elements from DRAM and writing back :math:`3MN + 2M` elements.
|
||||
Instead, we want to write a custom "fused" pytorch operators that only reads X once and does all the necessary computations on-chip.
|
||||
This would require reading and writing back only :math:`MN` bytes, so we could expect a theoretical speed-up of 5x.
|
||||
In practice, though, we expect less because our kernel will spend some time computing exponentials and moving data around in shared memory.
|
||||
|
||||
.. GENERATED FROM PYTHON SOURCE LINES 43-79
|
||||
|
||||
Compute Kernel
|
||||
----------------------------
|
||||
Our softmax kernel works as follows: each program loads a row of X and writes back a normalized row of Y. Note that one important limitation of Triton is that each block must have a power-of-two number of elements, which means that we need to guard the memory operations properly if we want to handle any possible input shapes:
|
||||
|
||||
.. code-block:: C
|
||||
|
||||
__global__ void softmax(float* Y, float* X, int stride_xm, int stride_ym, int M, int N){
|
||||
// row index
|
||||
int m = get_program_id(0);
|
||||
// column indices
|
||||
int n [BLOCK] = 0 ... BLOCK;
|
||||
// the memory address of all the elements
|
||||
// that we want to load can be computed as follows
|
||||
float* px [BLOCK] = X + m*stride_xm + n;
|
||||
// because BLOCK has to be a power of two
|
||||
// (per Triton-C specs), it is important
|
||||
// to guard each memory operation with predicates
|
||||
// or we will read out of bounds
|
||||
bool check[BLOCK] = n < N;
|
||||
float x [BLOCK] = check ? *px : -F32_INFINITY;
|
||||
// syntax for reduction in Triton is:
|
||||
// x[..., OPERATOR, ...]
|
||||
// ^
|
||||
// index
|
||||
// The operators currently supported are {min, max, +}
|
||||
float z [BLOCK] = x - x[max];
|
||||
// The exponential in Triton is fast but approximate
|
||||
// (i.e., like __expf in CUDA)
|
||||
float num [BLOCK] = exp(z);
|
||||
float denom = num[+];
|
||||
// The result of the reduction is now stored in y
|
||||
float y [BLOCK] = num / denom;
|
||||
// We write it back
|
||||
float* py [BLOCK] = Y + m*stride_ym + n;
|
||||
*?(check)py = y;
|
||||
}
|
||||
|
||||
.. GENERATED FROM PYTHON SOURCE LINES 81-86
|
||||
|
||||
Torch Bindings
|
||||
----------------------------
|
||||
We need to make sure that BLOCK is the smallest power of two
|
||||
greater than the number of rows N of the input matrix.
|
||||
Different values of BLOCK will result in different kernels
|
||||
|
||||
.. GENERATED FROM PYTHON SOURCE LINES 86-149
|
||||
|
||||
.. code-block:: default
|
||||
|
||||
|
||||
import torch
|
||||
import triton
|
||||
|
||||
# Source code for the Triton kernel
|
||||
_src = """
|
||||
__global__ void softmax(float* Y, float* X, int stride_ym, int stride_xm, int M, int N){
|
||||
int m = get_program_id(0);
|
||||
int n [BLOCK] = 0 ... BLOCK;
|
||||
float* px [BLOCK] = X + m*stride_xm + n;
|
||||
bool check[BLOCK] = n < N;
|
||||
float x [BLOCK] = check ? *px : -F32_INFINITY;
|
||||
float z [BLOCK] = x - x[max];
|
||||
float num [BLOCK] = exp(z);
|
||||
float denom = num[+];
|
||||
float y [BLOCK] = num / denom;
|
||||
float* py [BLOCK] = Y + m*stride_ym + n;
|
||||
*?(check)py = y;
|
||||
}
|
||||
"""
|
||||
|
||||
|
||||
def next_power_of_2(n):
|
||||
n -= 1
|
||||
n |= n >> 1
|
||||
n |= n >> 2
|
||||
n |= n >> 4
|
||||
n |= n >> 8
|
||||
n |= n >> 16
|
||||
n += 1
|
||||
return n
|
||||
|
||||
|
||||
_kernels = dict()
|
||||
|
||||
|
||||
def make_kernel(N, device):
|
||||
BLOCK = next_power_of_2(N)
|
||||
key = (BLOCK, device)
|
||||
if key not in _kernels:
|
||||
defines = {'BLOCK': BLOCK}
|
||||
_kernels[key] = triton.kernel(_src, device=device, defines=defines)
|
||||
return _kernels[key]
|
||||
|
||||
|
||||
class _softmax(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, x):
|
||||
# constraints of the op
|
||||
assert x.dtype == torch.float32
|
||||
y = torch.empty_like(x)
|
||||
# *create launch grid*:
|
||||
# here we just launch a grid of M programs
|
||||
M, N = y.shape
|
||||
grid = lambda opt: (M, )
|
||||
# *launch kernel*:
|
||||
kernel = make_kernel(N, y.device)
|
||||
kernel(y.data_ptr(), x.data_ptr(), y.stride(0), x.stride(0), M, N, grid=grid)
|
||||
return y
|
||||
|
||||
|
||||
softmax = _softmax.apply
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
.. GENERATED FROM PYTHON SOURCE LINES 150-152
|
||||
|
||||
Unit Test
|
||||
----------
|
||||
|
||||
.. GENERATED FROM PYTHON SOURCE LINES 152-160
|
||||
|
||||
.. code-block:: default
|
||||
|
||||
|
||||
x = torch.randn(1823, 781, device='cuda')
|
||||
y_tri = softmax(x)
|
||||
y_ref = torch.softmax(x, axis=1)
|
||||
print(y_tri)
|
||||
print(y_ref)
|
||||
print(torch.allclose(y_tri, y_ref))
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
.. rst-class:: sphx-glr-script-out
|
||||
|
||||
Out:
|
||||
|
||||
.. code-block:: none
|
||||
|
||||
tensor([[2.0935e-03, 6.4551e-04, 9.8605e-05, ..., 3.3981e-04, 2.7386e-03,
|
||||
9.1986e-05],
|
||||
[7.0923e-04, 6.7521e-04, 5.1366e-04, ..., 9.8392e-04, 2.6547e-04,
|
||||
6.9062e-04],
|
||||
[1.4032e-04, 5.8826e-04, 1.1694e-03, ..., 6.6423e-04, 1.8178e-04,
|
||||
6.7049e-04],
|
||||
...,
|
||||
[1.1767e-03, 4.2703e-03, 6.0596e-04, ..., 9.5274e-04, 1.1681e-03,
|
||||
6.4924e-04],
|
||||
[1.0772e-04, 7.4854e-04, 3.1912e-03, ..., 2.4980e-04, 1.9012e-03,
|
||||
5.2567e-04],
|
||||
[2.8518e-03, 8.1899e-04, 7.7046e-04, ..., 1.3403e-03, 5.3167e-04,
|
||||
4.3268e-04]], device='cuda:0')
|
||||
tensor([[2.0935e-03, 6.4551e-04, 9.8605e-05, ..., 3.3981e-04, 2.7386e-03,
|
||||
9.1986e-05],
|
||||
[7.0923e-04, 6.7521e-04, 5.1366e-04, ..., 9.8392e-04, 2.6547e-04,
|
||||
6.9062e-04],
|
||||
[1.4032e-04, 5.8826e-04, 1.1694e-03, ..., 6.6423e-04, 1.8178e-04,
|
||||
6.7049e-04],
|
||||
...,
|
||||
[1.1767e-03, 4.2703e-03, 6.0596e-04, ..., 9.5274e-04, 1.1681e-03,
|
||||
6.4924e-04],
|
||||
[1.0772e-04, 7.4854e-04, 3.1912e-03, ..., 2.4980e-04, 1.9012e-03,
|
||||
5.2567e-04],
|
||||
[2.8518e-03, 8.1899e-04, 7.7046e-04, ..., 1.3403e-03, 5.3167e-04,
|
||||
4.3268e-04]], device='cuda:0')
|
||||
True
|
||||
|
||||
|
||||
|
||||
|
||||
.. GENERATED FROM PYTHON SOURCE LINES 161-162
|
||||
|
||||
Seems to work!
|
||||
|
||||
.. GENERATED FROM PYTHON SOURCE LINES 164-166
|
||||
|
||||
Benchmarking
|
||||
----------
|
||||
|
||||
.. GENERATED FROM PYTHON SOURCE LINES 166-186
|
||||
|
||||
.. code-block:: default
|
||||
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
M = 4096
|
||||
Ns = [128 * i for i in range(2, 50)]
|
||||
tri_ms = []
|
||||
ref_ms = []
|
||||
def_ms = []
|
||||
for N in Ns:
|
||||
x = torch.randn(M, N, device='cuda', dtype=torch.float32)
|
||||
gbps = lambda ms: x.nelement() * x.element_size() * 1e-9 / (ms * 1e-3)
|
||||
tri_ms += [gbps(triton.testing.do_bench(lambda: softmax(x)))]
|
||||
ref_ms += [gbps(triton.testing.do_bench(lambda: torch.softmax(x, axis=1)))]
|
||||
def_ms += [gbps(triton.testing.do_bench(lambda: naive_softmax(x)))]
|
||||
plt.xlabel('N')
|
||||
plt.ylabel('Bandwidth (GB/s)')
|
||||
plt.plot(Ns, tri_ms, label='Triton')
|
||||
plt.plot(Ns, ref_ms, label='Torch')
|
||||
plt.plot(Ns, def_ms, label='Naive')
|
||||
plt.legend()
|
||||
plt.show()
|
||||
|
||||
|
||||
.. image:: /getting-started/tutorials/images/sphx_glr_02-fused-softmax_001.png
|
||||
:alt: 02 fused softmax
|
||||
:class: sphx-glr-single-img
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
.. rst-class:: sphx-glr-timing
|
||||
|
||||
**Total running time of the script:** ( 0 minutes 5.758 seconds)
|
||||
|
||||
|
||||
.. _sphx_glr_download_getting-started_tutorials_02-fused-softmax.py:
|
||||
|
||||
|
||||
.. only :: html
|
||||
|
||||
.. container:: sphx-glr-footer
|
||||
:class: sphx-glr-footer-example
|
||||
|
||||
|
||||
|
||||
.. container:: sphx-glr-download sphx-glr-download-python
|
||||
|
||||
:download:`Download Python source code: 02-fused-softmax.py <02-fused-softmax.py>`
|
||||
|
||||
|
||||
|
||||
.. container:: sphx-glr-download sphx-glr-download-jupyter
|
||||
|
||||
:download:`Download Jupyter notebook: 02-fused-softmax.ipynb <02-fused-softmax.ipynb>`
|
||||
|
||||
|
||||
.. only:: html
|
||||
|
||||
.. rst-class:: sphx-glr-signature
|
||||
|
||||
`Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_
|
81
_sources/getting-started/tutorials/index.rst.txt
Normal file
81
_sources/getting-started/tutorials/index.rst.txt
Normal file
@@ -0,0 +1,81 @@
|
||||
:orphan:
|
||||
|
||||
|
||||
|
||||
.. _sphx_glr_getting-started_tutorials:
|
||||
|
||||
Tutorials
|
||||
==================
|
||||
|
||||
Below is a gallery of tutorials for writing various basic operations with Triton. It is recommended that you read through the tutorials in order, starting with the simplest one.
|
||||
|
||||
|
||||
.. raw:: html
|
||||
|
||||
<div class="sphx-glr-thumbcontainer" tooltip="- The basic syntax of the Triton programming language - The best practices for creating PyTorch...">
|
||||
|
||||
.. only:: html
|
||||
|
||||
.. figure:: /getting-started/tutorials/images/thumb/sphx_glr_01-vector-add_thumb.png
|
||||
:alt: Vector Addition
|
||||
|
||||
:ref:`sphx_glr_getting-started_tutorials_01-vector-add.py`
|
||||
|
||||
.. raw:: html
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
.. toctree::
|
||||
:hidden:
|
||||
|
||||
/getting-started/tutorials/01-vector-add
|
||||
|
||||
.. raw:: html
|
||||
|
||||
<div class="sphx-glr-thumbcontainer" tooltip="- The benefits of kernel fusion for bandwidth-bound operations. - The syntax and usage of reduc...">
|
||||
|
||||
.. only:: html
|
||||
|
||||
.. figure:: /getting-started/tutorials/images/thumb/sphx_glr_02-fused-softmax_thumb.png
|
||||
:alt: Fused Softmax
|
||||
|
||||
:ref:`sphx_glr_getting-started_tutorials_02-fused-softmax.py`
|
||||
|
||||
.. raw:: html
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
.. toctree::
|
||||
:hidden:
|
||||
|
||||
/getting-started/tutorials/02-fused-softmax
|
||||
.. raw:: html
|
||||
|
||||
<div class="sphx-glr-clear"></div>
|
||||
|
||||
|
||||
|
||||
.. only :: html
|
||||
|
||||
.. container:: sphx-glr-footer
|
||||
:class: sphx-glr-footer-gallery
|
||||
|
||||
|
||||
.. container:: sphx-glr-download sphx-glr-download-python
|
||||
|
||||
:download:`Download all examples in Python source code: tutorials_python.zip </getting-started/tutorials/tutorials_python.zip>`
|
||||
|
||||
|
||||
|
||||
.. container:: sphx-glr-download sphx-glr-download-jupyter
|
||||
|
||||
:download:`Download all examples in Jupyter notebooks: tutorials_jupyter.zip </getting-started/tutorials/tutorials_jupyter.zip>`
|
||||
|
||||
|
||||
.. only:: html
|
||||
|
||||
.. rst-class:: sphx-glr-signature
|
||||
|
||||
`Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_
|
@@ -0,0 +1,14 @@
|
||||
|
||||
:orphan:
|
||||
|
||||
.. _sphx_glr_getting-started_tutorials_sg_execution_times:
|
||||
|
||||
Computation times
|
||||
=================
|
||||
**00:08.983** total execution time for **getting-started_tutorials** files:
|
||||
|
||||
+-----------------------------------------------------------------------------------------+-----------+--------+
|
||||
| :ref:`sphx_glr_getting-started_tutorials_02-fused-softmax.py` (``02-fused-softmax.py``) | 00:05.758 | 0.0 MB |
|
||||
+-----------------------------------------------------------------------------------------+-----------+--------+
|
||||
| :ref:`sphx_glr_getting-started_tutorials_01-vector-add.py` (``01-vector-add.py``) | 00:03.225 | 0.0 MB |
|
||||
+-----------------------------------------------------------------------------------------+-----------+--------+
|
Reference in New Issue
Block a user