Benchmark: rectified sizes for benchmarks to fit convnet-benchmarks
This commit is contained in:
@@ -262,34 +262,25 @@ void bench(sc::numeric_type dtype, std::string operation)
|
||||
MNKs.push_back(std::make_tuple("Square2560",'N','T',2560,2560,2560));
|
||||
|
||||
//Convolution
|
||||
// MNKs.push_back(std::make_tuple("ConvAlexNet1",'N','N',3025,96,363));
|
||||
// MNKs.push_back(std::make_tuple("ConvAlexNet2",'N','N',729,128,1200));
|
||||
// MNKs.push_back(std::make_tuple("ConvAlexNet3",'N','N',169,384,2304));
|
||||
// MNKs.push_back(std::make_tuple("ConvAlexNet4",'N','N',169,192,1728));
|
||||
// MNKs.push_back(std::make_tuple("ConvAlexNet5",'N','N',169,128,1728));
|
||||
MNKs.push_back(std::make_tuple("ConvAlexNet1",'N','N',3025,64,363));
|
||||
MNKs.push_back(std::make_tuple("ConvAlexNet2",'N','N',729,192,1600));
|
||||
MNKs.push_back(std::make_tuple("ConvAlexNet3",'N','N',169,384,1728));
|
||||
MNKs.push_back(std::make_tuple("ConvAlexNet4",'N','N',169,256,3456));
|
||||
MNKs.push_back(std::make_tuple("ConvAlexNet5",'N','N',169,128,2304));
|
||||
// MNKs.push_back(std::make_tuple("ConvLeNet1,'N','N',576,20,25));
|
||||
// MNKs.push_back(std::make_tuple("ConvLeNet2",'N','N',64,50,500));
|
||||
|
||||
//Convolution Gradient-1
|
||||
// MNKs.push_back(std::make_tuple("Convolution Gradient-1 [AlexNet-5]",'T','N',1728,128,169));
|
||||
// MNKs.push_back(std::make_tuple("Convolution Gradient-1 [AlexNet-4]",'T','N',1728,192,169));
|
||||
// MNKs.push_back(std::make_tuple("Convolution Gradient-1 [AlexNet-3]",'T','N',2304,384,169));
|
||||
// MNKs.push_back(std::make_tuple("Convolution Gradient-1 [AlexNet-2]",'T','N',1200,128,729));
|
||||
// MNKs.push_back(std::make_tuple("Convolution Gradient-1 [AlexNet-1]",'T','N',363,96,3025));
|
||||
// MNKs.push_back(std::make_tuple("Convolution Gradient-1 [LeNet-2]",'T','N',500,50,64));
|
||||
// MNKs.push_back(std::make_tuple("Convolution Gradient-1 [LeNet-1]",'T','N',25,20,576));
|
||||
MNKs.push_back(std::make_tuple("BackConvAlexNet5-1]",'T','N',2304,256,169));
|
||||
MNKs.push_back(std::make_tuple("BackConvAlexNet4-1]",'T','N',3456,256,169));
|
||||
MNKs.push_back(std::make_tuple("BackConvAlexNet3-1]",'T','N',1728,384,169));
|
||||
MNKs.push_back(std::make_tuple("BackConvAlexNet2-1]",'T','N',1600,192,729));
|
||||
MNKs.push_back(std::make_tuple("BackConvAlexNet1-1]",'T','N',363,64,3025));
|
||||
|
||||
//Convolution Gradient-2
|
||||
// MNKs.push_back(std::make_tuple("Convolution Gradient-2 [AlexNet-5]",'N','T',169,1728,128));
|
||||
// MNKs.push_back(std::make_tuple("Convolution Gradient-2 [AlexNet-4]",'N','T',169,1728,192));
|
||||
// MNKs.push_back(std::make_tuple("Convolution Gradient-2 [AlexNet-3]",'N','T',169,2304,384));
|
||||
// MNKs.push_back(std::make_tuple("Convolution Gradient-2 [AlexNet-2]",'N','T',729,1200,128));
|
||||
// MNKs.push_back(std::make_tuple("Convolution Gradient-2 [LeNet-2]",'N','T',64,500,50));
|
||||
MNKs.push_back(std::make_tuple("BackConvAlexNet5-2]",'N','T',169,2304,256));
|
||||
MNKs.push_back(std::make_tuple("BackConvAlexNet4-2]",'N','T',169,3456,256));
|
||||
MNKs.push_back(std::make_tuple("BackConvAlexNet3-2]",'N','T',169,1728,384));
|
||||
MNKs.push_back(std::make_tuple("BackConvAlexNet2-2]",'N','T',729,1600,192));
|
||||
MNKs.push_back(std::make_tuple("BackConvAlexNet1-2]",'N','T',3025,363,64));
|
||||
|
||||
//Covariance (e.g., ICA, 10minutes/100Hz)
|
||||
MNKs.push_back(std::make_tuple("ICA32",'N','T',32,32,60000));
|
||||
|
@@ -200,6 +200,7 @@ extern "C"
|
||||
const TYPE_CU *B, int ldb, TYPE_CU beta, TYPE_CU *C,\
|
||||
int ldc)\
|
||||
{\
|
||||
std::cout << transa << " " << transb << " " << m << " " << n << " " << k << std::endl;\
|
||||
if(k==1 && m>1 && n>1){\
|
||||
sc::array dA((sc::int_t)m, TYPE_ISAAC, sc::driver::Buffer((CUdeviceptr)A, false), 0, transa=='N'?1:lda);\
|
||||
sc::array dB((sc::int_t)n, TYPE_ISAAC, sc::driver::Buffer((CUdeviceptr)B, false), 0, transb=='T'?1:ldb);\
|
||||
|
@@ -83,20 +83,21 @@ class Tuner:
|
||||
(1536,1536,1536),
|
||||
(32,32,16000),
|
||||
(64, 64,64000),
|
||||
(3025,96,363),
|
||||
(729,128,1200),
|
||||
(169,384,2304),
|
||||
(169,192,1728),
|
||||
(169,128,1728),
|
||||
(169,1728,128),
|
||||
(169,1728,192),
|
||||
(169,2304,384),
|
||||
(729,1200,128),
|
||||
(1728,128,169),
|
||||
(1728,192,169),
|
||||
(2304,384,169),
|
||||
(1200,128,729),
|
||||
(363,96,3025)]
|
||||
(3025,64,363),
|
||||
(729,192,1200),
|
||||
(169,384,1728),
|
||||
(169,256,3456),
|
||||
(169,128,2304),
|
||||
(169,2304,256),
|
||||
(169,3456,256),
|
||||
(169,1728,384),
|
||||
(729,1600,192),
|
||||
(3025,363,64),
|
||||
(2304,256,169),
|
||||
(3456,256,169),
|
||||
(1728,384,169),
|
||||
(1600,192,729),
|
||||
(363,64,3025)]
|
||||
elif level=='full':
|
||||
sizes = product(pow2range(5, 12), pow2range(5, 12), pow2range(5, 17))
|
||||
|
||||
|
Reference in New Issue
Block a user